A study of the polymerization of a monofunctional benzoxazine monomer based on phenol and aniline and its copolymerization with epoxy resins
https://doi.org/10.35164/0554-2901-2021-1-2-14-18
Abstract
In the work, the liquid monofunctional benzoxazine monomer based on phenol and aniline (P-a) was synthesized in melt and benzoxazine-epoxy compositions based on it were obtained. The processes of polymerization of a benzoxazine monomer and its copolymerization with epoxy resins of various structures and functionality in catalyzed and non-catalyzed systems have been investigated, and the rheological properties of the compositions have been evaluated. For the obtained polybenzoxazines and benzoxazine-epoxy copolymers, the thermal characteristics were determined, in particular, the glass transition temperature, the temperature of the onset of intense destruction and the coke residue. It has been established that the structure and functionality of epoxy resins have a different effect on the thermal characteristics of the copolymers.
About the Authors
I. A. SarychevRussian Federation
V. V. Khmelnitsky
Russian Federation
M. A. Khaskov
Russian Federation
M. A. Guseva
Russian Federation
References
1. Хмельницкий В.В., Шимкин А.А. Высокомолекулярные бензоксазины – новый тип высокотемпературных полимерных связующих (обзор) // Труды ВИАМ: электрон. науч.-технич. журн. 2019. №2. Ст.05. URL: http://www.viam-works.ru (дата обращения 28.11.2019). DOI: 10.18577/2307-6046-2019-0-2-43-57.
2. Комагоркина А.В., Сарычев И.А., Орлов А.В., Сиротин И.С. Синтез бензоксазинов на основе дифенолов и гидроксиарилоксифосфазенов // Успехи в химии и химической технологии. 2017. Т. 31, № 11 (192). С. 52–54.
3. Ishida H., Allen D.J. Mechanical characterization of copolymers based on benzoxazine and epoxy // Polymer. 1996. Vol. 37, №20. P. 4487–4495.
4. Rimdusit S. et al. Highly processable ternary systems based on benzoxazine, epoxy, and phenolic resins for carbon fiber composite processing // Journal of Applied Polymer Science. 2009. Vol. 111, №3. P. 1225–1234.
5. Jubsilp C. et al. Curing kinetics of Benzoxazine–epoxy copolymer investigated by non-isothermal differential scanning calorimetry // Polymer Degradation and Stability. 2010. Vol. 95. P. 918–924.
6. Peng C. et al. Synthesis and application of a benzoxazine-type phosphorus-containing monomer on epoxy/benzoxazine copolymer: Thermal stability and compatibility with liquid oxygen // Polymer Degradation and Stability. 2018. Vol. 157. P. 131–142.
7. Espinosa M.A., Galià M., Cádiz V. Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems // Polymer. 2004. Vol. 45, №18. P. 6103–6109.
8. Chou T.Y., Tsai H.-Y., Yip M.C. Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer // Composites Part A: Applied Science and Manufacturing. 2019. Vol. 118. P. 30–40.
9. Rimdusit S. et al. Shape memory polymers from benzoxazine-modified epoxy // Smart Materials and Structures (Print). 2013. Vol. 22, №7.
10. Kuo S.-W., Liu W.-C. Synthesis and characterization of a cured epoxy resin with a benzoxazine monomer containing allyl groups // Journal of Applied Polymer Science. 2010. Vol. 117, №6. P. 3121–3127.
11. Rimdusit S., Kunopast P., Dueramae I. Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin // Polymer Engineering & Science. 2011. Vol. 51, №9. P. 1797–1807.
12. Kimura H. et al. Epoxy resin cured by bisphenol A based benzoxazine // Journal of Applied Polymer Science. 1998. Vol. 68, №12. P. 1903–1910.
13. Takeichi T. et al. High-performance polymer alloys of polybenzoxazine and bismaleimide // Polymer. 2008. Vol. 49, № 5. P. 1173–1179.
14. Rimdusit S. et al. Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy: A comparative study // Polymer Engineering & Science. 2005. Vol. 45, №3. P. 288–296.
15. Rimdusit S. et al. Eff ects of polyol molecular weight on properties of benzoxazine–urethane polymer alloys // Polymer Engineering & Science. 2008. Vol. 48, №11. P. 2238–2246.
16. Takeichi T., Guo Y. Preparation and Properties of Poly(urethanebenzoxazine)s Based on Monofunctional Benzoxazine Monomer // Polymer Journal. 2001. Vol. 33, №5. P. 437–443.
17. Kimura H., Ohtsuka K., Matsumoto A. Curing reaction of bisphenolA based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin, // Polymer Letters. 2011. Vol. 5, №12. P. 1113–1122.
18. Wang Y.-X., Ishida H. Development of low-viscosity benzoxazine resins and their polymers // Journal of Applied Polymer Science. 2002. Vol. 86, №12. P. 2953–2966.
19. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии, 2015. №1 (34). С. 3-33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Brunovska Z., Liu J.P., Ishida H. 1,3,5-Triphenylhexahydro-1,3,5-triazine – active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers // Macromolecular Chemistry and Physics. 1999. Vol. 200, №7. P. 1745–1752.
21. Soto M. et al. Multifunctional Benzoxazines Feature Low Polymerization Temperature and Diverse Polymer Structures // Polymers. 2016. Vol. 8, №8. P. 278.
22. Ishida H., Agag T. Handbook of Benzoxazine Resins. Elsevier, 2011. 709 p.
23. Wang H. et al. The effect of curing cycles on curing reactions and properties of a ternary system based on benzoxazine, epoxy resin, and imidazole // Journal of Applied Polymer Science. 2013. Vol. 127, №3. P. 2169–2175.
24. Zhao P. et al. Reaction induced phase separation in thermosetting/ thermosetting blends: effects of imidazole content on the phase separation of benzoxazine/epoxy blends // RSC Adv. 2014. Vol. 4, №106. P. 61634–61642.
25. Хасков М.А. Сравнительный анализ определения температур стеклования композиционных материалов методами ДСК, ТМА и ДМА // Вопросы материаловедения. 2014. Т. 79, №3. С. 138–144.
26. Барботько С.Л., Вольный О.С., Кириенко О.А., Шуркова Е.Н. Оценка пожаробезопасности полимерных материалов авиационного назначения / под общ. ред. Е.Н. Каблова. М.: ВИАМ, 2018. 408 с.
27. Гусева М.А. Использование реологического метода испытаний при разработке полимерных материалов различного назначения // Труды ВИАМ: электрон. науч.-технич. журн. 2018. №11. Ст.05. URL: http://www.viam-works.ru (дата обращения 28.11.2019). DOI: 10.18577/2307-6046-2018-0-11-35-44.
28. Петрова А.П., Мухаметов Р.Р., Шишимиров М.В., Павлюк Б.Ф., Старостина И.В. Методы испытаний и исследований термореактивных связующих для полимерных композиционных материалов (обзор) // Труды ВИАМ: электрон. науч.-технич. журн. 2018. №12. Ст.07. URL: http://www.viam-works.ru (дата обращения 28.11.2019). DOI: 10.18577/2307-6046-2018-0-12-62-70.
29. Каблов Е.Н., Чурсова Л.В., Бабин А.Н., Мухаметов Р.Р., Панина Н.Н. Разработки ФГУП «ВИАМ» в области расплавных связующих для полимерных композиционных материалов // Полимерные материалы и технологии, 2016. Т.2. №2. С. 37-42.
Review
For citations:
Sarychev I.A., Khmelnitsky V.V., Khaskov M.A., Guseva M.A. A study of the polymerization of a monofunctional benzoxazine monomer based on phenol and aniline and its copolymerization with epoxy resins. Plasticheskie massy. 2021;(1-2):14-18. (In Russ.) https://doi.org/10.35164/0554-2901-2021-1-2-14-18