Preview

Plasticheskie massy

Advanced search

Epoxy resin mechanical properties in composition with copper (I) oxide particles, encapsulated by polylactide with variable thickness

https://doi.org/10.35164/0554-2901-2023-11-12-31-34

Abstract

The required functional and mechanical properties are necessary for design the polymer compositions with dispersed fillers. The mechanical properties of such polymer composition can be changed by encapsulated filler particles shell thickness varying. The paper shows that the presence of polylactide polymer shell and its thickness on the surfaces of copper (I) oxide particles significantly affect the strength of polymer composite material based on ED-20 epoxy resin. That is due to the interaction between encapsulated particles and the matrix polymer, in contrast to noncapsulated particles. In addition, a change in particle size due to increasing shell thickness also affects the strength properties of the composition. It is shown that the elastic modulus of the filled epoxy composite does not depend on the shell thickness on the particle surfaces.

About the Authors

E. A. Bobina
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



M. P. Danilaev
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



T. R. Deberdeev
Kazan National Research Technological University (KNRTU)
Russian Federation

Kazan



S. V. Drobyshev
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



S. A. Karandashov
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



M. A. Klabukov
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



V. A. Kuklin
Kazan National Research Technical University named after A.N. Tupolev – KAI; Kazan Federal University
Russian Federation

Kazan



K. V. Faizullin
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Kazan



References

1. Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites // Compos. Part B Eng. 2008. V. 39, №6. P. 933–961. DOI: https://doi.org/10.1016/j.compositesb.2008.01.002.

2. Kawaguchi T., Pearson R.A. The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies: Part 1. A study on yield behavior and cohesive strength // Polymer. 2003. V. 44, №15. P. 4229–4238. DOI: https://doi.org/10.1016/S0032-3861(03)00371-9.

3. Сапронов А.А., Бень А.П., Букетова Н.Н. Исследование адгезионных и физико-механических свойств эпоксидных нанокомпозитов, наполненных фуллереном С 60 // Пластические массы. 2015. №9–10. С. 18–21.

4. Kuklin V., Karandashov S., Bobina E. et al. Analysis of Aluminum Oxides Submicron Particle Agglomeration in Polymethyl Methacrylate Composites // Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute, 2023. V. 24, № 3. P. 2515. DOI: https://doi.org/10.3390/ijms24032515.

5. Samal S. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite // Powder Technol. 2020. V. 366. P. 43–51. DOI: https://doi.org/10.1016/j.powtec.2020.02.054.

6. Paszkiewicz S., Pypeć K., Irska I. and Piesowicz E. Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review // Processes. Multidisciplinary Digital Publishing Institute, 2020. V. 8, №11. P. 1475. DOI: https://doi.org/10.3390/pr8111475.

7. Mittal V. Surface Modification of Nanoparticle and Natural Fiber Fillers. John Wiley & Sons, 2015. 242 p. DOI: http://dx.doi.org/10.1002/9783527670260.

8. Ghosh Chaudhuri R., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications // Chem. Rev. American Chemical Society, 2012. V. 112, №4. P. 2373–2433. DOI: https://doi.org/10.1021/cr100449n.

9. Kashfipour M.A., Mehra N., Zhu J. A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites // Adv. Compos. Hybrid Mater. 2018. V. 1, №3. P. 415–439. DOI: https://doi.org/10.1007/s42114-018-0022-9.

10. Jesson D.A., Watts J.F. The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification // Polym. Rev. Taylor & Francis, 2012. V. 52, №3. P. 321–354. DOI: https://doi.org/10.1080/15583724.2012.710288.

11. Кахраманов Н.Т., Гулиев А.Д., Аллахвердиева Х.В. Состояние проблемы получения и исследования структуры и свойств нанокомпозитов на основе полиолефинов и минеральных наполнителей // Пластические массы. 2022. Т. 1, №11–12. С. 46–52. DOI: https://doi.org/10.35164/0554-2901-2021-11-12-46-52.

12. Akhmadeev A.A., Bogoslov E.A., Danilaev M.P. et al. Influence of the Thickness of a Polymer Shell Applied to Surfaces of Submicron Filler Particles on the Properties of Polymer Compositions // Mech. Compos. Mater. 2020. V. 56, №2. P. 241–248. DOI: https://doi.org/10.1007/s11029-020-09876-4.

13. Danilaev M.P., Karandashov S.A., Kiyamov A.G. et al. Formation and Behavior of Residual Stresses in Particulate-Filled Polymer Composites with a Partially Crystalline Structure // Phys. Mesomech. 2022. V. 25, № 4. P. 335–343. DOI: https://doi.org/10.1134/S1029959922040075.

14. Valenkov A.M., Gofman I.V., Nosov K.S. et al. Polymeric composite systems modified with allotropic forms of carbon (review) // Russ. J. Appl. Chem. 2011. V. 84, №5. P. 735–750. DOI: https://doi.org/10.1134/S1070427211050016.

15. Lopresti F., Pavia F.C., Vitrano I. et al. Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats // J. Mech. Behav. Biomed. Mater. 2020. V. 101. P. 103449. DOI: https://doi.org/10.1016/j.jmbbm.2019.103449.

16. Rodríguez H.A., Kriven W.M., Casanova H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state // Mater. Sci. Eng. C. 2019. V. 101. P. 274–282. DOI: https://doi.org/10.1016/j.msec.2019.03.090.

17. Takagi H. Review of Functional Properties of Natural Fiber-Reinforced Polymer Composites: Thermal Insulation, Biodegradation and Vibration Damping Properties // Adv. Compos. Mater. Taylor & Francis, 2019. V. 28, № 5. P. 525–543. DOI: https://doi.org/10.1080/09243046.2019.1617093.

18. Wang Y., Hua H., Li W. et al. Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids // J. Dent. 2019. V. 80. P. 23–29. DOI: https://doi.org/10.1016/j.jdent.2018.11.002.

19. Данилаев М.П., Ильинская О.Н. Карандашов С.А. и др. Полимерная композиция с биоцидным эффектом // Технологии и оборудование химической, биотехнологической и пищевой промышленности, Материалы XV Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых с международным участием - г. Бийск, 2022. С. 316–318. DOI: 10.25699/tohbipp.2022.60.48.034.

20. Murariu M., Dechief A.L., Bonnaud L. et al. The production and properties of polylactide composites filled with expanded graphite // Polym. Degrad. Stab. 2010. V. 95, № 5. P. 889–900. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.12.019.

21. Механические свойства дисперсно-армированных полимерных композиционных материалов: коллективная монография / И.Н. Сидоров, М.П. Данилаев, В.А. Куклин, А.И. Энская. – Казань: КНИТУ-КАИ. 160 с.

22. Данилаев М.П., Дорогов Н.В., Дробышев С.В. и др. Капсулирование дисперсных частиц оксида меди (I) полилактидом // Конденсированные среды и межфазные границы. Т. 25, №1. С. 27–36. DOI: https://doi.org/10.17308/kcmf.2023.25/10943.

23. Danilaev M.P., Drobyshev S.V., Klabukov M.A. et al. Formation of a Polymer Shell of a Given Thickness on Surfaces of Submicronic Particles // Nanobiotechnology Rep. 2021. V. 16, №2. P. 162–166. DOI: https://doi.org/10.1134/S263516762102004X.

24. Чёрный Г.Г., Лосев С.А. (ред.) Физико-химические процессы в газовой динамике, том 1 [Электронный ресурс]. URL: https://www.studmed.ru/chernyy-gg-losev-sa-red-fiziko-himicheskie-processy-v-gazovoy-dinamike-tom-1_e1dd614af27.html.

25. Osman E., Vakhguelt A., Sbarski I. and Mutasher S.A. Mechanical Properties of Kenaf - Unsaturated Polyester Composites: Effect of Fiber Treatment and Fiber Length // Adv. Mater. Res. Trans Tech Publications Ltd, 2011. V. 311–313. P. 260–271. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.311-313.260

26. Gutiérrez-Mejía A., Herrera-Kao W., Duarte-Aranda S. et al. Synthesis and characterization of core–shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements // Mater. Sci. Eng. C. 2013. V. 33, №3. P. 1737–1743. DOI: https://doi.org/10.1016/j.msec.2012.12.087

27. Победря Б.Е. Механика композиционных материалов [Электронный ресурс]. URL: https://www.studmed.ru/pobedrya-be-mehanika-kompozicionnyh-materialov_a9bfe168ebe.html

28. Коротков В.Н., Чеканов Ю.А., Розенберг Б.А. Усадочные дефекты при отверждении полимерных композитных материалов (Обзор) // Высокомолекулярные соединения, Серия А. 1994. Т. 36, №4. С. 684–693.

29. Свистков А.Л. Моделирование разрушения эластомера с твердым наполнителем зернистого типа с учетом характерных размеров включений // Высокомолекулярные соединения Серия А. 1994. Т. 36, №3. С. 412–418.

30. В.М. Петров, С.Н. Безпальчук, С.П. Яковлев. О влиянии структуры на прочность изделий из пластиков, получаемых методом 3D-печати // Вестник государственного университета морского и речного флота им адмирала С. О. Макарова. 2017. №4 (44). – С. 765–776. DOI: 10.21821/2309-5180-2017-9-4-765-776.

31. Ильюшенко Е.В., Киенская К.И., Авpаменко Г.В. Микpоэмульсионное инкапсулиpование гидpохлоpида тpигексифенидила // Химическая технология. 2010. №3. С. 165–169.


Review

For citations:


Bobina E.A., Danilaev M.P., Deberdeev T.R., Drobyshev S.V., Karandashov S.A., Klabukov M.A., Kuklin V.A., Faizullin K.V. Epoxy resin mechanical properties in composition with copper (I) oxide particles, encapsulated by polylactide with variable thickness. Plasticheskie massy. 2023;(11-12):31-34. (In Russ.) https://doi.org/10.35164/0554-2901-2023-11-12-31-34

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)