Damping materials based on plasticized polybutyl methacrylate, polymethyl methacrylate and polyvinyl acetate
https://doi.org/10.35164/0554-2901-2023-11-12-26-30
Abstract
The purpose of the presented work is to investigate by DMA method the influence of the composition of filled and unfilled plasticized compositions based on polyvinyl acetate (PVA), polybutyl methacrylate (PBMA) and polymethyl methacrylate (PMMA) on their damping characteristics. It was found that when plasticizer is introduced into the polymer, the value of the mechanical loss coefficient first increases, reaches its maximum, and begins to decrease with further increase in the plasticizer content. The maximum effect is observed at a plasticizer/polymer volume ratio of 0.2-0.4. Two other dissipative characteristics, the temperature interval of effective damping and the integral coefficient of mechanical losses, are changing similarly. It is established that the additives of chlorinated paraffins in compositions based on PVA and PBMA can significantly improve their vibration absorbing characteristics. Introduction of mica filler into the composition of plasticized compositions based on PVA and PBMA does not lead to the appearаnсe of additional relaxation mechanisms. With increasing of the content of mica, the elastic modulus of compositions increases in the entire temperature range (especially significantly for compositions with a high content of plasticizer), the coefficient of mechanical losses slightly decreases, and the temperature practically does not change at which the maximum damping is observed.
About the Authors
A. I. SyatkovskiyRussian Federation
St Petersburg
I. D. Simonov-Emelyanov
Russian Federation
Moscow
References
1. E.M. Kerwin, Jr., E.E.Ungar. Requirement Imposed on Polymer Materials by Structural Damping Application.// Sound and Vibration Damping with Polymers. ACS Symp. Ser. Am. Chem. Soc. Washington, DC, 1990, P. 317–345.
2. Chakraborty B.C., Debdatta Ratna. Polymer for vibration damping applications // Elsevier. 2020. P. 348. eBook ISBN: 9780128192535.
3. M.C.O. Chang, D.A. Thomas, L.H. Sperling. Characterization of Area Under Loss Modulus and Tan δ-Temperature Curves: Acrylic Polymers and Their Sequential Interpenetrating Polymer Networks // J. Appl.Polym.Sci., 1987, Vol. 34, Р. 409–422.
4. T. Ogawa, T. Yamada. A Numerical Prediction on Peak Area in Loss Factor for Polymers //J. Appl. Polym. Sci., 1994, Vol. 53, Р. 1663–1666.
5. X. Yin, Ch. Liu, Y. Lin, A. Guan, G. Wu. Infl uence of hydrogen bonding interaction on the damping properties of poly (n-butyl methacrylate)/small molecule hybrids //J. Appl. Polym. Sci., 2015, 132, 41954. DOI: 10.1002/app.41954.
6. X. He, M. Qu, X. Shi. Damping Properties of Ethylene-Vinyl Acetate Rubber/ Polylactic Acid Blends // Journal of Materials Science and Chemical Engineering, 2016, 4, 15-22. http://dx.doi.org/10.4236/msce.2016.43003.
7. R.A.S. Moreira, J. Dias Rodrigues. Multilayer Damping Treatments: Modeling and Experimental Assessment. // Journal of Sandwich Structures and Materials. 2010, Vol. 12, P. 181–198.
8. H. Zhang, X. Ding, Q. Wang, W. Ni, H. Li. Topology optimization of composite material with high broadband damping. // Computers and Structures, 2020, 239, 106331. https://doi.org/10.1016/j.compstruc.2020.1063310045-7949.
9. Ионов А.В. Средства снижения вибрации и шума на судах. СПб: ЦНИИ им. акад. А. Н. Крылова, 2000. – 368 с.
10. Laurence E. Nilsen, Robert. F. Landel. Mechanical Properties of Polymers and Composites. 2nd., ed. Marcel Dekker, Inc., New York, 1994.
11. Chifei Wu. Organic Hybrid of Chlorinated Polyethylene and Hindered Phenol. IV. Modifi cation on Dynamic Mechanical Properties by Chlorinated Paraffi n. // J. of Polymer Sci.; Part B: Polymer Physics, 2001, Vol. 39, P. 23–31.
12. Волоцкий А.Н., Юркин Ю.В., Черкасов В.Д., Авдонин В.В., Мансурова И.А. Оценка влияния полярности пластификатора на динамические свойства полимерных материалов на основе этиленвинилацетата // Вестник БГТУ им В.Г. Шухова. 2018, №9, С. 15–23. http://doi.org/10.12737/article_5bab4.04154876a18018689.04154876.
13. G. Shi, Y. Liu, G.Wu. βfast Relaxation Governs the Damping Stability of Acrylic Polymer / Hindered Phenol Hybrids. // Macromolecules, https://dx.doi.org/10.1021/acs.macromol.0c00255.
14. Липатов Ю.С. Физическая химия наполненных полимеров. М.: Химия, 1977. – 304 с.
15. Skuratova T. B., Kirillov S. E., Syatkovskii A. I. Dissipative properties of polymer fi lms and composite materials based on polyvinyl acetate // Russ. J. Appl. Chem. 2019. V. 92. №7. P. 952–957. https//doi.org/10.1134/S0044461819070090
16. Сятковский А.И., Скуратова Т.Б., Трофимов Д.Н., СимоновЕмельянов И.Д. Диссипативные свойства термопластичных полимерных пленок и композитных материалов на основе полибутилметакрилата. // Материаловедение. 2021. №11 - С. 10–16. DOI: 10.31044/1684-579X-2021-0-11-10-16.
17. Сятковский А.И., Скуратова Т.Б., Крылова Ю.В., Симонов-Емельянов И.Д. Термопластичные пленки для вибропоглощающих слоистых материалов с улучшенной водостойкостью // Пластические массы. 2021. № 1-2. – С.19–21. https://doi.org/10.35164/0554-2901-2021-1-2-19-21
18. Ферри Дж. Вязкоупругие свойства полимеров. М.: Изд-во И.Л., 1963. – 535 с.
Review
For citations:
Syatkovskiy A.I., Simonov-Emelyanov I.D. Damping materials based on plasticized polybutyl methacrylate, polymethyl methacrylate and polyvinyl acetate. Plasticheskie massy. 2023;(11-12):26-30. (In Russ.) https://doi.org/10.35164/0554-2901-2023-11-12-26-30