Preview

Plasticheskie massy

Advanced search

Synthesis of phosphazene methacrylate oligomers and their use for modification of dental composite materials

https://doi.org/10.35164/0554-2901-2022-3-4-30-33

Abstract

The reaction of epoxyphosphazenes with methacrylic acid was used to synthesize methacrylate-containing phosphazene oligomers (MPO) used to modify dental restorative materials.

The introduction of 1015 wt.% MPO into the base bis-methacrylate binder composition can significantly increase the adhesion of modified cured compositions to tooth tissues and metals, as well as improve water resistance while maintaining the required strength indicators and other physicochemical characteristics required by GOST.

About the Authors

YU. V. BILICHENKO
Mendeleev University of Chemical Technology of Russia
Russian Federation


VU XUAN SON
Mendeleev University of Chemical Technology of Russia
Russian Federation


PHAM VAN THUAN
Mendeleev University of Chemical Technology of Russia
Russian Federation


I. S. SIROTIN
Mendeleev University of Chemical Technology of Russia
Russian Federation


V. V. KIREEV
Mendeleev University of Chemical Technology of Russia
Russian Federation


V. P. CHUEV
JSC «VLADMIVA» Experimental Plant
Russian Federation


B. V. KLYUKIN
JSC «VLADMIVA» Experimental Plant
Russian Federation


V. F. POSOKHOVA
JSC «VLADMIVA» Experimental Plant
Russian Federation


References

1. Allen C.W., Hernandez-Rubio D. Applicative Aspects of Poly-(organophosphazenes). Nova science Publishers, Inc. New York, 2004, pp. 119-137.

2. Allcock H.R. The crucial role of inorganic ring chemistry in the development of new polymers: Phosphorus, Sulfur, and Silicon and the Related Elements, 2004, V. 179, N. 4-5, p. 661-671. https://doi.org/10.1080/10426500490426386

3. Liu H., Wang X., Wu D. Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: Synthesis, curing behaviors, and flame retardancy: Polymer Degradation and Stability, 2014, V. 103, N. 1, p. 96-112. https://doi.org/10.1016/j.polymdegradstab.2013.02.008.

4. Liu J., He Z., Wu G., Zhang X., Zhao C., Lei C. Synthesis of a novel nonflammable eugenol-based phosphazene epoxy resin with unique burned intumescent char. Chem. Eng. Journal, 2020, Vol. 390, p. 124620. https://doi.org/10.1016/j.cej.2020.124620.

5. You G., and et. A Well-Defined Cyclotriphosphazene-Based Epoxy Monomer and Its Application as A Novel Epoxy Resin: Synthesis, Curing Behaviors, and Flame Retardancy. Phosphorus, Sulfur, and Silicon and the Related Elements, 2014, Vol. 189, N4, p. 541-550. https://doi.org/10.1080/10426507.2013.829838.

6. Chistyakov E.M., Kireev V.V., Filatov S.N., Terekhov I.V., Buzin M.I., Komarova L.I. Thermal polycondensation of hexa-p-Hydroxymethylphenoxycyclotriphosphazene. Polymer Science, Ser. B, 2012, Vol. 54, Nos. 7–8, pp. 407–412. https://doi.org/10.1134/S1560090412080015.

7. Чистяков Е.М., Филатов С.Н., Киреев В.В., Лысенко К.А., Бузин М.И., Чуев В.П. Cинтез и структура гекса-пара-ацетамидофеноксициклотрифосфазена. ЖОХ, 2012, T. 81, №6, c. 906-909.

8. Sirotin I.S., Bilichenko Yu.V., Brigadnov K.A., Kireev V.V., Suraeva O.V., Borisov R.S. Oligomeric Hydroxy-Aryloxy Phosphazene Based on Cyclic Chlorophosphazenes. Russian Journal of Applied Chemistry, 2013, Vol. 86, No. 12, pp. 1903−1912. https://doi.org/10.1134/S1070427213120161.

9. Kireev V.V., Chistyakov E.M., Filatov S.N., Borisov R.S., Prudskov B.M. Synthesis and Modification of Oligo(aryloxycyclotriphosphazenes) Based on 4,4’-Dihydroxydiphenyl-2,2’-propane. Polymer Science, Ser. B, 2011, Vol. 53, Nos. 7–8, pp. 412–419. https://doi.org/10.1134/S1560090411060078.

10. Lakshmikandhan T., Sethuraman K., Chandramohan A., Alagar M. Development of phosphazene imine-modified epoxy composites for low dielectric, antibacterial activity, and UV shielding applications // Polymer Composites. 2017. V. 38. pp. E24–E33. https://doi.org/10.1002/pc.23846.

11. Xu G.-R., Xu M.-J., Li B. Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance // Polymer Degradation and Stability. 2014. V. 109. pp. 240–248. https://doi.org/10.1016/j.polymdegradstab. 2014.07.020

12. You G., Cai Z., Peng H., Tan X., He H. A well-defined cyclotriphosphazene-based epoxy monomer and its application as a novel epoxy resin: Synthesis, curing behaviors, and flame retardancy // Phosphorus, Sulfur, Silicon and the Related Elements. 2014. V. 189. Issue 4. pp.541–550. https://doi.org/10.1080/10426507.2013.82983.

13. Chistyakov E.M., Panfilova D.V., Kireev V.V. Carboxyl derivatives of phosphazenes. Russ. J. Gen. Chem., 2017, Vol. 87, No. 5, pp. 997–1006. https://doi.org/10.1134/S1070363217050188.

14. Chistyakov E.M., Panfilova D.V., Kireev V.V., Volkov V.V., Bobrov M.F. Synthesis and properties of hexakis-(β-carboxyethenylphenoxy)- cyclotriphosphazene. Journal of Molecular Structure, 2017, Vol 1148, pp. 1-6. https://doi.org/10.1016/j.molstruc.2017.07.005

15. Филатов С.Н. Дисс. на соискание ученой степени доктора химических наук. РХТУ им. Д. И. Менделеева, 2015.

16. Terekhov I.V., Filatov S.N., Chistyakov E.M., Borisov R.S., Kireev V.V. Synthesis of oligomeric epoxycyclotriphosphazenes and their properties as reactive flame-retardants for epoxy resins. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, Vol. 192, N. 5, pp. 544-554. https://doi.org/10.1080/10426507.2016.1274752.

17. Sarychev I.A., Sirotin I.S., Borisov R.S., Mu J., Sokolskaya I.B., Bilichenko J.V., Filatov S.N., Kireev V.V. Synthesis of ResorcinolBased Phosphazene-Containing Epoxy Oligomers. Polymers, 2019, Vol. 11, No. 4, p. 614. https://doi.org/10.3390/polym11040614.

18. Brigadnov K. A., Bilichenko Yu.V., Polyakov V.A., Borisov R.S., Gusev K.I., Rudakova T.A., Filatov S.N., Kireev V.V. Epoxy Oligomers Modified with Epoxyphosphazenes. Polym. Sci., Ser. B, 2016, Vol. 58, No. 5, pp. 549–555. https://doi.org/10.1134/S1560090416050018.

19. Sirotin I.S., Bilichenko Yu.V., Brigadnov K.A., Kireev V.V., Prudskov B.M., Borisov R.S. Single-stage synthesis of phosphazene-containing epoxy oligomers. Polym. Sci., Ser. B, 2014, Vol. 56, No. 4, pp. 471–476. https://doi.org/10.1134/S1560090414040113.

20. Sirotin I.S., Vu Suan Shon, Bilichenko Yu.V., Borisova R.S., Gorbunova E.A., Kireev V.V. Methacrylate-Containing Phosphazene Oligomers. Polym. Sci., Ser. B, 2022. https://doi.org/10.1134/S1560090422020129.


Review

For citations:


BILICHENKO Yu.V., SON V., THUAN P., SIROTIN I.S., KIREEV V.V., CHUEV V.P., KLYUKIN B.V., POSOKHOVA V.F. Synthesis of phosphazene methacrylate oligomers and their use for modification of dental composite materials. Plasticheskie massy. 2022;(3-4):30-33. (In Russ.) https://doi.org/10.35164/0554-2901-2022-3-4-30-33

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)