Preview

Plasticheskie massy

Advanced search

Solution properties of amphiphilic amino- and oligoethylene glycol-containing methacrylic copolymers

https://doi.org/10.35164/0554-2901-2021-11-12-40-42

Abstract

The behavior of methacrylic copolymers with oligoethylene glycol and amine groups in aqueous solutions has been studied. The eff ect of the composition of copolymers of alkoxyoligo(ethylene glycol) methacrylates and N-[3-(dimethylamino) propyl] methacrylamide on their solubility in aqueous media, aggregation properties and surface activity at the water-oil phase boundary was demonstrated. The presence of thermo- and pH-responsive properties, characterized by lower critical solution temperature, has been shown. Polymers exhibit high interfacial activity at the water-toluene interface, which increases with an increase in the proportion of methacrylic ether units in the copolymer. For polymers in aqueous media the value of the critical micelle concentration was found in the region of 10-3 g/L.

About the Authors

D. M. Kamorin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute
Russian Federation

Dzerzhinsk



K. V. Shirshin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute; V.A. Kargin Research Institute of Polymer Chemistry and Technology with Pilot Plant
Russian Federation

Dzerzhinsk



V. D. Kavtrova
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute
Russian Federation

Dzerzhinsk



Y. V. Sak
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute
Russian Federation

Dzerzhinsk



E. A. Timchenko
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute
Russian Federation

Dzerzhinsk



A. S. Simagin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Dzerzhinsk Polytechnic Institute
Russian Federation

Dzerzhinsk



References

1. Zhou Q., Zhang L., Yang T., Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy // International Journal of Nanomedicine, 2018. – V. 13. – P. 29212942. DOI: 10.2147/IJN. S158696.

2. Majumder N., Das N.G., Das S.K. Polymeric micelles for anticancer drug delivery // Therapeutic delivery, 2020. – V. 11. – N. 10. – P. 613635. DOI: 10.4155/tde-2020-0008.

3. Vittorio O., Curcio M., Cojoc M. et al. Polyphenols delivery by polymeric materials: challenges in cancer treatment // Drug Deliv. 2017. – V. 24. – N. 1. – P. 162180. DOI: 10.1080/10717544.2016.1236846.

4. Elezaby R.S., Gad H.A., Metwally A.A. et al. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery // J. Controlled Release, 2017. – V. 261. – P. 43–61. DOI: 10.1016/j.jconrel.2017.06.019.

5. Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers // Chem. Soc. Rev., 2013. – V. 42. – P. 7214. DOI: 10.1039/C3CS35499G.

6. Eke I., Elmas B., Tuncel M., Tuncel A. A new, highly stable cationicthermosensitive microgel: Uniform isopropylacrylamide-dimethy laminopropylmethacrylamide copolymer particles // Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006. – V. 279. – I. 1–3. – P. 247253. DOI: 10.1016/j.colsurfa.2006.01.011.

7. Mishra R.K., Ramasamy K., Majeed A.B.A. pH-responsive poly(DMAPMA-co-HEMA)-based hydrogels for prolonged release of 5-fl uorouracil // J Appl Polym Sci., 2012. – V. 126. – I. S2. – P. E98E107. DOI: 10.1002/app.36714.

8. Çaykara T., Birlik G.Synthesis and network parameters of hydrophobic poly(N-[3-(dimethylaminopropyl)]methacrylamide-colauryl acrylate) hydrogels // J. Appl. Polym. Sci., 2006. – V. 101. – I. 6. – P. 41594166. DOI: 10.1002/app.23759.

9. Das A., Mehndiratta M., Chattopadhyay P., Ray A.R. Prolonged zero-order BSA release from pH-sensitive hydrogels of poly- (AAc-co-DMAPMA) having rich nano through micro scale morphology // J. Appl. Polym. Sci., 2010. – V. 115. – I. 1. – P. 393403. DOI: 10.1002/app.30968.

10. Wesslén B., Wesslén K.B. Preparation and properties of some watersoluble, comb-shaped, amphiphilic polymers // Journal of Polymer Science: Part A: Polymer Chemistry, 1989. – V. 27. – P. 39153926. DOI: 10.1002/pola.1989.080271204.

11. Kuckling D., Doering A., Krahl F., Arndt K-F. Stimuli-Responsive Polymer Systems // Polymer Science: A Comprehensive Reference, 2012. – V. 8. – P. 377442. DOI: 10.1016/B978-0-444-53349- 4.00214-4.

12. Wilkinson M.C. Extended use of, and comments on, the dropweight (drop-volume) technique for the determination of surface and interfacial tensions / Wilkinson M.C. // J. Colloid Interface Sci. 1972. – V. 40. – P. 1426.

13. Szymanowski J., Voelkel A. Hydrophile lipophile balance of hydroxyoximes in McGowan scale and their partition and extraction properties // J. Chem. Tech. Biotechnol., 1992. – V. 54. – I. 1. – P. 1926. DOI: 10.1002/jctb.280540105.


Review

For citations:


Kamorin D.M., Shirshin K.V., Kavtrova V.D., Sak Y.V., Timchenko E.A., Simagin A.S. Solution properties of amphiphilic amino- and oligoethylene glycol-containing methacrylic copolymers. Plasticheskie massy. 2021;1(11-12):40-42. (In Russ.) https://doi.org/10.35164/0554-2901-2021-11-12-40-42

Views: 337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)