Preview

Plasticheskie massy

Advanced search

Investigation of mixtures based on polyethylene and polylactide with the addition of secondary polymer raw materials

https://doi.org/10.35164/0554-2901-2025-02-46-49

Abstract

During operation, polymeric materials are exposed to various aggressive factors, such as light, heat, oxygen, pressure and others. Oxidation processes can have a negative impact on the properties of blends. Degradation by thermal oxidation are important factors affecting the material during molding, chemical processing and disposal consideration. Analysis of the effect of secondary low density polyethylene on the behavior of polyethylene-polylactide blends during thermooxidative degradation showed that the additive accelerates the onset of oxidation both at 80°C and at 90°С. It was found by DSC method that after the thermo-oxidation process the glass transition peak of polylactide in the mixture becomes faint, and also the thermophysical characteristics of 30 PLA/60 LDPE/10 LDPEsec mixture components increase.

About the Author

M. V. Podzorova
The Plekhanov Russian University of Economics
Russian Federation

Moscow



References

1. Промышленное производство в России. 2023: Стат. сб. [Электронный ресурс] //Росстат. М.: 2023. 259 c.URL: https://rosstat.gov.ru (дата обращения 20.02.2024).

2. Рынки сбыта российских базовых полимеров 2023. Часть I: внутреннее потребление [Электронный ресурс] // Rupec. 30.01.2024. URL: https://rupec.ru/articles/52783 (дата обращения 20.02.2024).

3. Getor R.Y., Mishra N., Ramudhin A. The role of technological innovation in plastic production within a circular economy frame work // Resources, Conservation and Recycling. 2020. V. 163. P. 105094. https://doi.org/10.1016/j.resconrec.2020.105094.

4. Strangl M., Lok B., Breunig P., Ortner E., Buettner A. The challenge of deodorizing post-consumer polypropylene packaging: screening of the effect of washing, color-sorting and heat exposure // Resources, Conservation and Recycling. 2021. V.164. P. 1051. https://doi.org/10.1016/j.resconrec.2020.105143.

5. Dai L., Zhou N., Lv Y., Cheng Y., Wang Y., Liu Y., Cobb K., Chen P., Lei H., Ruan R. Pyrolysis technology for plastic waste recycling: a state-of-the-art review // Progress in Energy and Combustion Science. 2022. V. 93. P. 101021 https://doi.org/10.1016/j.pecs.2022.101021.

6. Gao P., Krantz J., Ferki O., Nieduzak Z., Perry S., Sobkowicz M.J., Masato D. Thermo-mechanical recycling via ultrahigh-speed extrusion of film-grade recycled LDPE and injection molding // Sustainable Materials and Technologies. 2023. V. 38. P. e00719. https://doi.org/10.1016/j.susmat.2023.e00719.

7. Martínez-Romo A., González-Mota R., Soto-Bernal J.J., Rosales-Candelas I. Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation // Journal of Spectroscopy. 2015. V. 2015(10). P. 1–6. https://doi.org/10.1155/2015/586.

8. Uwamungu J. Y., Wang Y., Shi G. et al. Microplastic contamination in soil agro-ecosystems: A review // Environment Advances. 2022. V. 9. P. 100273. https://doi.org/10.1016/j.envadv.2022.100273.

9. Kawashima N., Yagi T., Kojima K. How do bioplastics and fossil-based plastics play in a circular economy // Macromolecular Materials and Engineering. 2019. V. 304. P. 1900383. https://doi.org/10.1002/mame.201900383.

10. Rad M. M., Moghimi H., Azin E. Biodegradation of thermo-oxidative pretreated low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics by Achromobacter denitrificans Ebl13 // Marine Pollution Bulletin. 2022. V. 181. P. 113830. https://doi.org/10.1016/j.marpolbul.2022.113830.

11. Cuadri A.A., J.E. Martín-Alfonso Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties // Polymer Degradation and Stability. 2018. V. 150. P. 37–45. https://doi.org/10.1016/j.polymdegradstab.2018.02.011.

12. Подзорова М.В., Тертышная Ю.В., Попов А.А. Механические характеристики композиций на основе полиэтилена и полилактида при воздействии агрессивных факторов окружающей среды // Все материалы. Энциклопедический справочник. 2022. №6. С. 2–10. https://doi.org/10.31044/1994-6260-2022-0-6-2-10.

13. Podzorova M.V., Tertyshnaya Y.V. Thermal and thermooxidative degradation of blends based on polylactide and polyethylene // Russian Metallurgy (Metally). 2020. Т. 2020. N10. С. 1182–1185. https://doi.org/10.1134/S0036029520100213.

14. Podzorova M.V., Tertyshnaya Y.V. Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene // Russian Chemical Bulletin. 2021. Т. 70. N9. С. 1791–1797. https://doi.org/10.1007/s11172-021-3284-2.

15. Gardette M., Perthue A., Gardette J.L., Janecska T., Foldes E., Pukanszky B., Therias S. Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content // Polymer Degradation and Stability. 2013. V. 98. P. 2383–2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017.

16. Mofokeng J.P., Luyt A.S. Morphology and thermal degradation studies of meltmixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler // Polymer Testing. 2015. V. 45. P. 93–100. https://doi.org/10.1016/j.polymertesting.2015.05.007.

17. Tertyshnaya Yu.V., Podzorova M.V., Monakhova T.V., Popov A.A. Solid-Phase Thermal Oxidation of Polyethylene–Polylactide Blends // Russian Journal of Physical Chemistry B. 2019. Т. 13, N2. P. 354– 361. https://doi.org/10.1134/S1990793119020106.

18. Podzorova M.V., Tertyshnaya Y.V. Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene // Russian Chemical Bulletin. 2021. Т. 70, N9. С. 1791–1797. https://doi.org/10.1007/s11172-021-3284-2.


Review

For citations:


Podzorova M.V. Investigation of mixtures based on polyethylene and polylactide with the addition of secondary polymer raw materials. Plasticheskie massy. 2025;(2):46-49. (In Russ.) https://doi.org/10.35164/0554-2901-2025-02-46-49

Views: 253


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)