Preview

Plasticheskie massy

Advanced search

Hardness of treated non-woven needle-punched fabric based on a mixture of synthetic fibers

https://doi.org/10.35164/0554-2901-2025-02-42-45

Abstract

The effect of processing modes of non-woven needle-punched fabric based on a mixture of polyethylene terephthalate and bicomponent fibers in a ratio of 70/30 wt.% on the hardness of materials intended for polishing polymers, glass and ceramics was studied. The fabric was processed on a special device, in which thermomechanical effect on the fabric is achieved in the gap between the heated roll and the conveyor belt with regulation of the heating thickness and obtaining materials with a gradient of fiber packing density by thickness. A model is proposed to predict the hardness of materials obtained by varying the processing speed and roll temperature. A relationship between the structure of the fabric and processed materials and their hardness is established.

About the Authors

N. I. Godin
Moscow Polytechnic University
Russian Federation

Moscow



V. G. Nazarov
Moscow Polytechnic University
Russian Federation

Moscow



A. V. Dedov
Moscow Polytechnic University
Russian Federation

Moscow



References

1. Jain N.K., Jain V.K., Jha S. Parametric optimization of advanced fine-finishing processes // Int. J. Adv. Manuf. Technol. 2017. V. 34, N11–12. Р. 1191–1213. DOI:10.1007/s00170-006-0682-4.

2. Lichtner A., Roussel D., Röhrens D., Jauffres D., Villanova J., Martin C.L., Bordia R.K. Anisotropic sintering behavior of freezecast ceramics by optical dilatometry and discrete-element simulations // Acta Mater. 2018. V. 155. Р. 343–346. DOI: 10.1016/j.actamat.2018.06.001.

3. Rakshit R., Das A.K. A review on cutting of industrial ceramic materials // Precis. Eng. 2019. V. 59, N2. Р. 90–97. DOI: 10.1016/j.precisioneng. 2019.05.009.

4. Терашкевич Д.И., Бокова Е.С., Гинзбург А.С., Коваленко Г.М. Анализ микроструктуры полировальных материалов на основе полиуретанов // Пластические массы. 2021. №1–2. С. 3–6. DOI: 10.35164/0554-2901-2021-1-2-3-6.

5. Dedov A.V., Babushkin S.V., Platonov A.V., Kondratov A.P., Nazarov V.G. Sorption properties of nonwoven materials // Fibre Chem. 2001. V. 33, N5. Р. 56–58. DOI:10.15828/2075-8545-2023-15-1-53-58.

6. Dedov A.V. Forming of the pore structure of needlepunch materials // Fibre Сhem. 2008. V. 40, N5. Р. 464–466. DOI:10.1007/s10692-009-9076-3.

7. Yang М., Sheng Р. Sound absorption structures: from porous media to acoustic metamaterials//Ann. Rev. Mater. Res. 2017. V. 47, N1. Р. 83–114. DOI:10.1146/annurev-matsci-070616-124032.

8. Yang Т., Xiong Х., Wang Y., Mishra R., Petrů M., Militký J. Application of Acoustical Method to Characterize Nonwoven Material//Fibers and Polym. 2021. V. 22, N3. Р. 831–840. DOI:10.1146/annurev-matsci-070616-124032.

9. Zobel, S., Maze, B., Tafreshi, H.V., Wang, Q., and Pourdeyhimi, B. Simulating Permeability of 3-D Calendered Fibrous Structures // Chem. Engineering Sci. 2007. V. 62. Р. 6285. DOI: 10.1016/j.ces.2007.07.007.

10. Dedov, A.V., Nazarov, V.G. Mechanical characteristics of needlepiercing material obtained from a mixture of polyester and polypropylene fibers treated on roll calendar // Fibre Chem. 2011. 43(3): 259–262. DOI:10.1007/s10692-011-9344-x.

11. Kopitar D., Skenderi Z., Mijovic B. Study on the Influence of Calendaring Process on Thermal Resistance of Polypropylene Nonwoven Fabric Structure // J. Fiber Bioengineering and Informatics. 2014. V. 7, N1. Р. 1–11. DOI:10.3993/jfbi03201401.

12. Kopitar D, Skenderi Z, Rukavina T. Impact of calendering process on nonwoven geotextiles hydraulic properties // Textile Research J. 2014. N1. P. 69–80. DOI:10.1177/0040517513485627.

13. Ayad E., Cayla A., Rault F., Gonthier A., Campagne C., Devaux E. Influence of Rheological and Thermal Properties of Polymers During Melt Spinning on Bicomponent Fiber Morphology // J. Mater. Engineering and Performance. 2016. V. 25, N6. Р. 3296–3302. DOI:10.1007/s11665-016-2193-2.

14. Prahsarn C., Klinsukhon W., Padee S., Su-Wannamek N., Roungpaisan N., Srisawat N. Hol low segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability // J. Mater. Sci. 2016. V. 51. N8. Р. 10910–10916. DOI:10.1007/s10853-016-0302-0.

15. Huang W.T., Liu D.Z., Li J.F., Zhu L.P., Yan S.G. Polymer complexation for functional fibers // Sci. China Technol. Sci. 2019. V. 62, N5. Р. 931–944. DOI: 10.1016/j.carpta.2020.100030.

16. Leshchenko T.A., Chernousova N.V., Dedov A.V., Nazarov V.G. Effect of processing regimes on mechanical properties of material based on a three-component fiber mixture Fibre Chem. 2024. V. 55, N5. С. 318–322. DOI:10.1007/s10692-024-10483-5

17. Dedov A.V., Bokova E.S., Ryzhkin V.A. Production nonwoven needlepunched materials with increased stretch resistance // Fibre Chemistry. 2013. V. 45, N4. С. 221–223. DOI:10.1007/s10692-013-9516-y.

18. Dedov A.V., Nazarov V.G. Processed Nonwoven Needlepunched Materials with Increased Strength // Fibre Chem. 2015. V. 47, N2. Р. 121–125. DOI:10.1007/s10692-015-9649-2.


Review

For citations:


Godin N.I., Nazarov V.G., Dedov A.V. Hardness of treated non-woven needle-punched fabric based on a mixture of synthetic fibers. Plasticheskie massy. 2025;(2):42-45. (In Russ.) https://doi.org/10.35164/0554-2901-2025-02-42-45

Views: 229


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)