Properties of polyimide foams obtained using water-soluble salts of polyamide acids
https://doi.org/10.35164/0554-2901-2023-9-10-29-32
Abstract
The synthesis of polyimide foams obtained as a result of heat treatment of lyophilized water-soluble salts of polyamide acids based on dianhydrides of 3,3’,4,4’-diphenyloxide-, 3,3’,4,4’-benzophenonetetracarboxylic acids and 4,4’-diaminodiphenyl ether was carried out. A study of the structure and morphology of foam samples obtained was carried out. The results of evaluating the mechanical properties and thermal stability of the resulting polyimide foams are presented.
Keywords
About the Authors
V. M. SvetlichnyiRussian Federation
Saint Petersburg
K. S. Polotnyanshchikov
Russian Federation
Saint Petersburg
E. M. Ivan'kova
Russian Federation
Saint Petersburg
A. G. Ivanov
Russian Federation
Saint Petersburg
G. V. Vaganov
Russian Federation
Saint Petersburg
L. A. Myagkova
Russian Federation
Saint Petersburg
E. N. Popova
Russian Federation
Saint Petersburg
V. E. Yudin
Russian Federation
Saint Petersburg
References
1. Fabrication and Multifunctional Applications // ACS Applied Materials & Interfaces. 2020. V. 12, № 43. P. 48246–48258.
2. Wang Y., He T., Cheng Z., Liu M., Ji J., Chang X., Xu Q., Liu Y., Liu X., Qin J. Mechanically Strong and Tough Polyimide Aerogels Cross-Linked with Amine Functionalized Carbon Nanotubes Synthesized by Fluorine Displacement Reaction // Composites Science and Technology. 2020, V. 195, № 2. P. 108204.
3. Xu L., Jiang S., Li B., Hou W., Li G., Memon M. A., Huang Y., Geng J. Graphene Oxide: A Versatile Agent for Polyimide Foams with Improved Foaming Capability and Enhanced Flexibility // Chemistry of Materials. 2015. V. 27, № 12, P. 4358–4367.
4. Hou T.-H., Weiser E.S., Siochi E.J., St Clair T.L. Processing Characteristics of TEEK Polyimide Foam // High Performance Polymers 2004. V. 16, № 4. P. 487–504.
5. Williams M.K., Holland D.B., Melendez O., Weiser E.S., Brenner J.R., Nelson G.L. Aromatic Polyimide Foams: Factors that Lead to High Fire Performance // Polymer Degradation and Stability. 2005. V. 88, № 1. P. 20–27.
6. Luo Y., Ni L., Yan L., Zou H., Zhou S., Liang M. Structure to Properties Relations of Polyimide Foams Derived from Various Dianhydride Components // Industrial & Engineering Chemistry Research. 2021. V. 60, № 26. P. 9489–9499.
7. Ni L., Luo Y., Qiu C., Shen L., Zou H., Liang M., Liu P., Zhou S. Mechanically flexible polyimide foams with different chain structures for high temperature thermal insulation purposes // Materials Today Physics. 2022. V. 26. P. 100720.
8. Pan L.Y., Zhan M.S., Wang K. Preparation and characterization of high temperature resistant polyimide foam //Polymer Engineering & Science. 2010. V. 50, No. 6. P. 1261–1267.
9. Qi K., Zhang G., Li S., Liu L., He Zh. Preparation and Properties of High Performance Polyimide Foam // Advanced Materials Research. 2011. V. 221. P. 66–71.
10. Chen D.-S., Chen C.-H., Whang W.-T., Su C.-W. Novel Synthesis of Polyimide Foams with Aromatic and 1,6-Diaminohexane Imide Bonding // Advances in Polymer Technology. 2022. V. 2022. Article ID 3859792. doi: 10.1155/2022/3859792
11. Wang Y.-Y., Zhou Z.-H., Zhou C.-G., Sun W.-J., Gao J.-F., Dai K., Yan D.-X., Li Z.-M. Lightweight and Robust Carbon Nanotube/Polyimide Foam for Effi cient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption // ACS Applied Materials & Interfaces. 2020. V. 12, №7. P. 8704–8712.
12. Силинская И.Г., Светличный В.М., Калинина Н.А., Диденко А.Л., Кудрявцев В.В. Структура растворов форполимеров аморфных и плавких частично кристаллических полиимидов // Высокомолекулярные соединения. Серия А. 2002. Т. 44, № 6. С. 1–6.
Review
For citations:
Svetlichnyi V.M., Polotnyanshchikov K.S., Ivan'kova E.M., Ivanov A.G., Vaganov G.V., Myagkova L.A., Popova E.N., Yudin V.E. Properties of polyimide foams obtained using water-soluble salts of polyamide acids. Plasticheskie massy. 2023;(9-10):29-32. (In Russ.) https://doi.org/10.35164/0554-2901-2023-9-10-29-32