Контролируемый синтез и свойства растворов сополимеров метакриловых эфиров и аммоний-содержащего метакриламида
https://doi.org/10.35164/0554-2901-2023-7-8-31-36
Аннотация
Методом радикальной полимеризации с обратимой передачей цепи по механизму «присоединение-фрагментация» с высокими выходами и в контролируемом режиме получены сополимеры на основе олиго(этиленгликоль)метакрилата, додецилметакрилата и катионного мономера N-метакрилоиламинопропил-N,N-диметил-N-пропиламмоний бромида. Показано влияние состава полученных полимеров на растворимость в воде и органических растворителях, распределение в системе вода-октанол и межфазное натяжение на границе «вода-масло». Обнаружено наличие термочувствительных свойств для полимеров в воде, а также исследована их агрегация в водных средах.
Об авторах
А. С. СимагинРоссия
г. Нижний Новгород
О. А. Казанцев
Россия
г. Нижний Новгород
Д. М. Каморин
Россия
г. Нижний Новгород
Н. С. Каморина
Россия
г. Нижний Новгород
В. Д. Кавтрова
Россия
г. Нижний Новгород
Список литературы
1. Sung Y.K., Kim S.W. Recent advances in polymeric drug delivery systems // Biomater. Res. – 2020. – V. 24. – Article number 12. DOI: 10.1186/s40824-020-00190-7.
2. Salari N., Faraji F., Torghabeh F.M., et al. Polymer-based drug delivery systems for anticancer drugs: A systematic review // Cancer Treatment and Research Communications. – 2022. – V. 32. – 100605. DOI: 10.1016/j.ctarc.2022.100605.
3. Venditti I. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review // Journal of King Saud University – Science. – 2019. – V. 31. – I. 3. – P. 398–411. DOI: 10.1016/j.jksus.2017.10.004.
4. Ghezzi M., Pescina S., Padula C., et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions // Journal of Controlled Release. – 2021. – V. 332. – P. 312–336. DOI: 10.1016/j.jconrel.2021.02.031.
5. Srivastava A., Yadav T., Sharma S., еt al. Polymers in Drug Delivery // J. Biosciences and Medicines. – 2016. – V. 4. – I. 1. – P. 69–84. DOI: 10.4236/jbm.2016.41009.
6. Zheng W., Anzaldua M., Arora A., et al. Environmentally Benign Nanoantibiotics with a Built-in Deactivation Switch Responsive to Natural Habitats // Biomacromolecules. – 2020. – V. 21. – I. 6. – P. 2187–2198. DOI: 10.1021/acs.biomac.0c00163.
7. Senkum H., Gramlich W.M. Cationic Bottlebrush Polymers from Quaternary Ammonium Macromonomers by Grafting-Through Ring-Opening Metathesis Polymerization // Macromol. Chem. Phys. – 2020. – V. 221. – I. 5. – 1900476. DOI: 10.1002/macp.201900476.
8. Pan Y., Wang X., Yin Z. Synthesis and evaluation of cationic polymeric micelles as carriers of lumbrokinase for targeted thrombolysis // Asian J. Pharm. Sci. – 2019. – V. 14. – I. 2. – P. 144–153. DOI: 10.1016/j.ajps.2018.03.004.
9. Dalal R.J., Kumar R., Ohnsorget M., et al. Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression // ACS Macro Lett. – 2021. – V. 10. – I. 7. – P. 886–893. DOI: 10.1021/acsmacrolett.1c00335.
10. Dey D., Maiti C., Maiti S., Dhara D. Interaction between calf thymus DNA and cationic bottle-brush copolymers: equilibrium and stopped-flow kinetic studies // Phys. Chem. Chem. Phys. – 2015. – V. 17. – I. 4. – P. 2366–2377. DOI: 10.1039/C4CP03309D.
11. Modra K., Dai S., Zhang H., et al. Polycation-mediated gene delivery: Challenges and considerations for the process of plasmid DNA transfection // Eng. Life Sci. –2015. – V. 15. – P. 489–498. DOI: 10.1002/elsc.201400043.
12. Jiao Y., Niu L.-N., Ma S., et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance // Progress in Polymer Science. – 2017. – V. 71. – P. 53–90. DOI: 10.1016/j.progpolymsci.2017.03.001.
13. J., Huang Y., Zong S., Jiang J. Preparation and Drug Release Properties of a Thermo Sensitive GA Hydrogel // Polymers. – 2021. – V. 13. – N. 1. – P. 119. DOI: 10.3390/polym13010119.
14. Mishra R.K., Ray A.R. Synthesis and Characterization of Poly{N-[3-(dimethylamino)propyl]methacrylamide-co-itaconic acid} Hydrogels for Drug Delivery // Journal of Applied Polymer Science. – 2011. – V. 119. – P. 3199–3206.
15. Каморин Д.М., Ширшин К.В., Симагин А.С., Кавтрова В.Д., Сак Ю.В., Тимченко Е.А. Растворные свойства амфифильных амино- и олигоэтиленгликольсодержащих метакриловых сополимеров // Пластические массы. – 2021. – №11–12. – C. 40–42. DOI: 10.35164/0554-2901-2021-11-12-40-42.
16. Shahrbabaki Z., Oveissi F., Farajikhah S., et al. Electrical Response of Poly(N-[3-(dimethylamino)Propyl] Methacrylamide) to CO2 at a Long Exposure Period // ACS Omega. – 2022. – V. 7. – I. 26. – P. 22232–22243. DOI: 10.1021/acsomega.2c00914.
17. Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives // Angew. Chem. Int. Ed. Engl. – 2010. – V. 49. – I. 36. – P. 6288–6308. DOI: 10.1002/anie.200902672.
18. Lutz J.-F., Akdemir O., Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly (NIPAM) over? // Journal of the American Chemical Society. – 2006. – V. 128. – N. 40. – 13046–13047. DOI: 10.1021/ja065324n.
19. Terashima T., Sugita T., Fukae K., Sawamoto M. Synthesis and Single-Chain Folding of Amphiphilic Random Copolymers in Water // Macromolecules. – 2014. – V. 47. – I. 2. – P. 589–600. DOI: 10.1021/ma402355v.
20. 20. Terashima T., Sugita T., Sawamoto M. Single-chain crosslinked star polymers via intramolecular crosslinking of self-folding amphiphilic copolymers in water // Polymer Journal. – 2015. – V. 47. – P. 667–677. DOI: 10.1038/pj.2015.54.
21. Hirai Y., Terashima T., Takenaka M., Sawamoto M. Precision Self-Assembly of Amphiphilic Random Copolymers into Uniform and Self-Sorting Nanocompartments in Water // Macromolecules. – 2016. – V. 49. – I. 14. – P. 5084–5091. DOI: 10.1021/acs.macromol.6b01085.
22. Hattori G., Hirai Y., Sawamoto M., Terashima T. Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles // Polym. Chem. – 2017. – V. 8. – I. 46. – P. 7248–7259. DOI: 10.1039/ C7PY01719G.
23. López Á.M., Tirado-Guizar A., Licea-Claverie A. et al. Thermo and pH-Responsive Poly(DEGMA-co-OEGMA)-b-Poly(DEAEM) Synthesized by RAFT Polymerization and Its Self-Assembly Study // Macromol. Res. – 2022. – V. 30. – P. 917–929. DOI: 10.1007/s13233-022-0093-x.
24. Semsarilar M., Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers // Macromol. Chem. Phys. – 2021. – V. 222. – I. 1. – 2000311. DOI: 10.1002/macp.202000311.
25. Synthesis of trithiocarbonate raft gents and intermediates thereof: пат. WO/2005/113493 / Farnham W.B.; E.I. du Pont de Nemours and Company; опубл. 01.12.2005.
26. Wesslén B., Wesslén K.B. Preparation and properties of some water-soluble, comb-shaped, amphiphilic polymers // Journal of Polymer Science: Part A: Polymer Chemistry. – 1989. – V. 27. – P. 3915–3926. DOI: 10.1002/pola.1989.080271204.
27. Wilkinson M.C. Extended use of, and comments on, the drop-weight (drop-volume) technique for the determination of surface and interfacial tensions / Wilkinson M.C. // J. Colloid Interface Sci. – 1972. – V. 40. – P. 14–26.
28. Kuckling D., Doering A., Krahl F., Arndt K-F. Stimuli-Responsive Polymer Systems // Polymer Science: A Comprehensive Reference. – 2012. – V. 8. – P. 377–442. DOI: 10.1016/B978-0-444-53349-4.00214-4.
29. Perrier S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide // Macromolecules. – 2017. – V. 50. – I. 19. – P. 7433– 7447. DOI: 10.1021/acs.macromol.7b00767.
30. Horgan A., Saunders B., Vincent B., Heenan R.K. Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties // Journal of Colloid and Interface Science. – 2003. – V. 262. – P. 548–559. DOI: 10.1016/S0021-9797(03)00239-X.
31. Laschewsky A. Molecular Concepts, Self-Organisation and Properties of Polysoaps // In: Polysoaps/Stabilizers/Nitrogen-15 NMR. Advances in Polymer Science. – 1995. – V. 124. – P. 1–86. DOI: 10.1007/BFb0025228.
32. Lutz J.-F. Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward New Generations of Smart Biocompatible Materials // Journal of Polymer Science: Part A: Polymer Chemistry. – 2008. – V. 46. – P. 3459–3470. DOI: 10.1002/pola.22706.
33. Hibino M., Tanaka K., Ouchi M., Terashima T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association // Macromolecules. – 2022. – V. 55. – P. 178−189. DOI: 10.1021/acs.macromol.1c02186.
Рецензия
Для цитирования:
Симагин А.С., Казанцев О.А., Каморин Д.М., Каморина Н.С., Кавтрова В.Д. Контролируемый синтез и свойства растворов сополимеров метакриловых эфиров и аммоний-содержащего метакриламида. Пластические массы. 2023;1(7-8):31-36. https://doi.org/10.35164/0554-2901-2023-7-8-31-36
For citation:
Simagin A.S., Kazantsev O.A., Kamorin D.M., Kamorina N.S., Kavtrova V.D. Controlled synthesis and solution properties of copolymers of methacrylic esters and ammonium-containing methacrylamide. Plasticheskie massy. 2023;1(7-8):31-36. (In Russ.) https://doi.org/10.35164/0554-2901-2023-7-8-31-36