Preview

Plasticheskie massy

Advanced search

Influence of plasticizer on the physical and mechanical properties of composites based on low density polyethylene and quartz

https://doi.org/10.35164/0554-2901-2023-3-4-30-35

Abstract

The influence of quartz (silicon dioxide) content on main physical and mechanical properties of composites based on low density polyethylene is considered. It is shown that the introduction of a compatibilizer – a copolymer of high-density polyethylene with maleic anhydride – into the composition improves the properties and compatibility of the mixed components. The use of synthesized polyethylene wax as a plasticizer made it possible to significantly improve the deformability of highly filled composites. The method of thermomechanical studies shows the patterns of change in thermomechanical curves in the temperature range of 20 –200°C, depending on the concentration of quartz in the presence of a plasticizer and a compatibilizer.

About the Authors

Z. A. Gemberly
Institute of Petrochemical Processes named after Y.Mammadaliyev of the Ministry of Science and Education of Azerbaijan
Azerbaijan

Baku



G. R. Azizbeyli
Institute of Petrochemical Processes named after Y.Mammadaliyev of the Ministry of Science and Education of Azerbaijan
Azerbaijan

Baku



N. B. Arzumanova
Institute of Polymeric Materials of the Ministry of Science and Education of Azerbaijan
Azerbaijan

Sumgayt



S. R. Abdalova
Institute of Polymeric Materials of the Ministry of Science and Education of Azerbaijan
Azerbaijan

Sumgayt



References

1. Ермаков С.Н., Кербер М.Л., Кравченко Т.П. Химическая модификация и смешение полимеров при реакционной экструзии // Пластические массы, 2007, №10, С. 32–41.

2. Лавров Н.А. Традиции и инновации в химии и технологии полимеров // Пластические массы, 2021, №7–8, С. 3–7.

3. Попов О.Н., Майникова Н.Ф., Костромина Н.В., Кравченко Т.П., Горбунова И.Ю. Изучение структурных переходов в полимерах методом неразрушающего контроля // Пластические массы, 2021, №1–2, С. 11–13. https://doi.org/10.35164/0554-2901-2021-1-2-11-13.

4. Pomogailo A.D. Molecular polymer–polymer compositions. Synthetic aspects // RUSS CHEM REV, 2002, V. 71, No1, P. 1–31. https://doi.org/10.1070/RC2002v071n01ABEH000681.

5. Barczewski M., Matykiewicz D., Piasecki A., Szostak M. Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties // Composite Interfaces, 2018, V. 25, No 4, P. 287-299, https://doi.org/10.1080/09276440.2018.1399713.

6. Ашуров Н.Р, Долгов В.В., Садыков Ш.Г., Усманова М.М. Нанокомпозиты. Полимеры этилена, наполненные слоистым алюмосиликатом. Ташкент: Фан, 2016. 184 с.

7. Wang D., Yang B., Chen Q.-T., Chen J., Su L.-F., Chen P., Zheng Z.Z., Miao J.-B., Qian J.-S., Xia R., Shi Y. A facile evaluation on melt crystallization kinetics and thermal properties of low-density polyethylene (LDPE)/Recycled polyethylene terephthalate (RPET) blends // Advanced Industrial and Engineering Polymer Research, 2019, V. 2, No 3, P. 126–135. https://doi.org/10.1016/j.aiepr.2019.05.002.

8. Чердынцева С.В., Белоусов С.И., Крашенинников С.В. Влияние вида органического модификатора монтмориллонита на физико-химические свойства нанокомпозитов на основе полиамида-6, полученных смешением в расплаве // Пластические массы, 2013, №5, С. 39–43.

9. Ольхов А.А., Румянцев Б.М., Гольштрах М.А. Структурные параметры полимерного композиционного материала на основе полиэтилена и нанокристаллического кремния // Пластические массы, 2013, №10, С. 6–8.

10. Осама Аль Хело, Осипчик В.С., Петухова А.В., Кравченко Т.П., Коваленко В.А. Модификация наполненного полипропилена // Пластмассы, 2009, №1, С. 43–46.

11. Allahverdiyeva K.V., Kakhramanov N.T., Namazly U.V. Thermomechanical Properties of Composites Based on High-Density Polyethylene and Aluminum // Polym. Sci. Ser. D, 2021, V. 14, P. 598–602. https://doi.org/10.1134/S1995421222010026.

12. Dorigato A., D’Amato M., Pegoretti A. Thermo-mechanical properties of high density polyethylene – fumed silica nanocomposites: effect of filler surface area and treatment // Journal of Polymer Research, 2012, V. 19, No.6, P. 1–11. https://doi.org/10.1007/s10965012-9889-2.

13. Kakhramanov N, Allahverdiyeva K, Gahramanli Y, Mustafayeva F, Martynova G. Physical-mechanical properties of multifunctional thermoplastic elastomers based on polyolefins and styrene-butadiene elastomer // Journal of Elastomers & Plastics. 2023, V. 55, No 2, P. 279-302. https://doi.org/10.1177/00952443221147030.

14. Romo-Uribe A., Lichtenhan, J.D. Melt extrusion and blow molding parts-per-million POSS interspersed the macromolecular network and simultaneously enhanced thermomechanical and barrier properties of polyolefin films // Polym Eng Sci, 2021, V. 61, N.1, P. 245– 257. https://doi.org/10.1002/pen.25572.

15. Алоев В.З., Жирикова З.М., Тарчокова М.А. Эффективность использования нанонаполнителей разных типов в полимерных композитах // Изв. вузов. Химия и хим. Технология, 2020, Т.63, №4, С.81–85. https://doi.org/10.6060/ivkkt.20206304.6158.

16. Kakhramanov N.T., Kurbanova R.V., Kakhramanly Y.N., Mammadova G.M. About mechanism of dressing of surface of mineral fillers of plastics. Problems and their solutions // Processes of petrochemistry and oil refining, 2018, No 4, P. 389–396.

17. Atlukhanova, L.B., Kozlov, G.V. & Dolbin, I.V. The Correlation between the Nanofiller Structure and the Properties of Polymer Nanocomposites: Fractal Model. // Inorg. Mater. Appl. Res., 2020, V. 11, P. 188–191. https://doi.org/10.1134/S2075113320010049.

18. Kakhramanov, N.T., Bayramova, I.V., Pesetsky, S.S. Thermomechanical Properties of Nanocomposites Based on Clinoptilolite and a Copolymer of Ethylene with Hexene // Inorg. Mater. Appl. Res., 2020, V. 11, P. 1184–1190. https://doi.org/10.1134/S2075113320050135.

19. Kalistratova, L.F., Egorova, V.A. Ordering of the Amorphous Phase as One of the Characteristics of Supramolecular Structure of Amorphous-Crystalline Polymer // Inorg. Mater. Appl. Res, 2019, V. 10, P. 933–938. https://doi.org/10.1134/S2075113319040208.

20. Kozlov, G.V., Dolbin, I.V. Transfer of Mechanical Stress from Polymer Matrix to Nanofiller in Dispersion-Filled Nanocomposites // Inorg. Mater. Appl. Res, 2019, V. 10, P. 226–230. https://doi.org/10.1134/S2075113319010167.

21. Kakhramanov N.T., Bayramova I.V., Allahverdiyeva Kh.V. Thermomechanical properties of nanocomposites based on vesuvian and copolymer of ethylene with hexane // Processes of petrochemistry and oil refining, 2021, V. 22, No 1, P. 13-23.

22. Рагушина М.Д., Битт В.В., Калугина Е.В. Влияние различных модификаторов на свойства вторичного полиэтилена, подходы к рециклингу пластмасс // Пластические массы, 2022, №9-10, С.42-45. https://doi.org/10.35164/0554-2901-2022-9-10-42-45.

23. Петрюк И.П. Влияние параметров дисперсной структуры на содержание межфазного слоя в наполненных полимерах // Пластические массы, 2014, №5–6, С.7–13.

24. Shadrinov N.V., Borisova A.A. Thermophysical and Dynamic Properties of Nitrile Butadiene Rubber Filled with Ultra-High Molecular Weight Polyethylene // Inorg. Mater. Appl. Res., 2021, V. 12, P. 1112–1119. https://doi.org/10.1134/S2075113321040389.

25. Kakhramanov N.T., Kurbanova R.V., Osipchik V.S. Physicomechanical Properties of Organic-Inorganic Hybrid Gels Based on Various Thermoplastic Ethylene-Propylene Copolymers and Natural Minerals // Inorg. Mater. Appl. Res, 2021, V. 12, P. 1021–1025. https://doi.org/10.1134/S2075113321040213.

26. Cao X., Wu M., Zhou A., Wang Y., He X., Wang L. Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites // e-Polymers, 2017, V. 17, No. 5, P. 373–381. https://doi.org/10.1515/epoly-2017-0017.

27. Евтушенко Ю.М., Рудакова Т.А., Григорьев Ю.А. Озерин А.Н. Полиэтилен низкого давления, модифицированный органо-монтмориллонитом // Все материалы. Энциклопедический справочник, 2018, №8, С.12–16.

28. Parameswaranpillai J., Elamon R., Sanjay M.R., Siengchin S. Synergistic effects of ethylene propylene diene copolymer and carbon nanofiber on the thermo-mechanical properties of polypropylene/ high-density polyethylene composites // Materials Research Express, 2019, V. 6, No 8, ID 085302. https://doi.org/10.1088/2053-1591/ab1d37.

29. Allahverdiyeva K.V., Kakhramanov N.T. Ismayilov I.A. Physicomechanical Properties of Composites Based on Various Types of Polyethylene and Aluminum // Inorg. Mater. Appl. Res, 2021, V. 12, P. 477–481. https://doi.org/10.1134/S2075113321020027.

30. Zorin V.A., Baurova N.I., Kosenko, E.A. Detection of defects in components made of dispersion-filled polymeric materials by the method of infrared thermography // Polym. Sci. Ser. D, 2017, V. 10, P. 241–243. https://doi.org/10.1134/S1995421217030212.

31. Лямкин Д.Н., Скрозников С.В., Жемерикин А.Н. Влияние способа сшивания на стабильность химической сетки полиэтиленовой изоляции кабельных изделий при термомеханическом воздействии. //Пластические массы, 2012, №2, с.25-28.

32. Улитин Н.В., Дебердеев Т.Р. Некоторые вязкоупругие свойства плотносшитых сетчатых полимеров. Теоретический расчет. // Пластические массы, 2012, №2, с.34-39.


Review

For citations:


Gemberly Z.A., Azizbeyli G.R., Arzumanova N.B., Abdalova S.R. Influence of plasticizer on the physical and mechanical properties of composites based on low density polyethylene and quartz. Plasticheskie massy. 2023;(3-4):30-35. (In Russ.) https://doi.org/10.35164/0554-2901-2023-3-4-30-35

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)