Применение полианилина и полипиррола в электронике
https://doi.org/10.35164/0554-2901-2020-7-8-28-31
Аннотация
Об авторах
Я. О. МежуевРоссия
М. И. Штильман
Россия
Ю. В. Коршак
Россия
Список литературы
1. Wang, H., Lin, J., & Shen, Z.X. (2016). Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 1(3), 225–255. doi:10.1016/j.jsamd.2016.08.001.
2. Hou, J., Cao, C., Idrees, F., & Ma, X. (2015). Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano, 9(3), 2556–2564. doi:10.1021/nn506394r.
3. Peng, C., Zhang, S., Jewell, D., & Chen, G. Z. (2008). Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science, 18(7), 777–788. doi:10.1016/j.pnsc.2008.03.002.
4. Lota, G., Fic, K., & Frackowiak, E. (2011). Carbon nanotubes and their composites in electrochemical applications. Energy & Environmental Science, 4(5), 1592. doi:10.1039/c0ee00470g.
5. Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150.
6. Zhou, H., Chen, H., Luo, S., Lu, G., Wei, W., & Kuang, Y. (2005). The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. Journal of Solid State Electrochemistry, 9(8), 574–580. doi:10.1007/s10008-004-0594-x.
7. Wang, K., Huang, J., & Wei, Z. (2010). Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. The Journal of Physical Chemistry C, 114(17), 8062–8067. doi:10.1021/jp9113255.
8. Mondal, S.K., Barai, K., & Munichandraiah, N. (2007). High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochimica Acta, 52(9), 3258– 3264. doi:10.1016/j.electacta.2006.09.067.
9. Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520. doi:10.1039/b813846j.
10. Xing, W., Zhuo, S., Cui, H., & Yan, Z. (2007). Synthesis of polyaniline-coated ordered mesoporous carbon and its enhanced electrochemical properties. Materials Letters, 61(23-24), 4627–4630. doi:10.1016/j.matlet.2007.02.062.
11. Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., & Gu, Z. (2008). Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochemistry Communications, 10(7), 1056–1059. doi:10.1016/j.elecom.2008.05.007.
12. Liu, J., Sun, J., & Gao, L. (2010). A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films. The Journal of Physical Chemistry C, 114(46), 19614–19620. doi:10.1021/jp1092042.
13. Guo, F., Mi, H., Zhou, J., Zhao, Z., & Qiu, J. (2015). Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon, 95, 323–329. doi:10.1016/j.carbon.2015.08.052.
14. Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., & Wei, F. (2010). Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 48(2), 487–493. doi:10.1016/j.carbon.2009.09.066.
15. Wang, H., Hao, Q., Yang, X., Lu, L., & Wang, X. (2009). Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 11(6), 1158–1161. doi:10.1016/j.elecom.2009.03.036.
16. Lu, X.-F., Chen, X.-Y., Zhou, W., Tong, Y.-X., & Li, G.-R. (2015). α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials& Interfaces, 7(27), 14843–14850. doi:10.1021/acsami.5b03126.
17. Yan, J., Wei, T., Qiao, W., Fan, Z., Zhang, L., Li, T., & Zhao, Q. (2010). A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications, 12(10), 1279–1282. doi:10.1016/j.elecom.2010.06.037.
18. Fan, L.-Z., & Maier, J. (2006). High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications, 8(6), 937–940. doi:10.1016/j.elecom.2006.03.035 .
19. Wang, D., Wang, X., Yang, X., Yu, R., Ge, L., & Shu, H. (2015). Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. Journal of Power Sources, 293, 89–94. doi:10.1016/j.jpowsour.2015.05.058.
20. Lai, C., Zhang, H.Z., Li, G. R., & Gao, X. P. (2011). Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. Journal of Power Sources, 196(10), 4735–4740. doi:10.1016/j.jpowsour.2011.01.077.
21. Ferchichi, K., Hbaieb, S., Amdouni, N., Pralong, V., & Chevalier, Y. (2014). Pickering emulsion polymerization of polyaniline/LiCoO2 nanoparticles used as cathode materials for lithium batteries. Ionics, 20(9), 1301–1314. doi:10.1007/s11581-014-1074-7.
22. Chen, W.-M., Huang, Y.-H., & Yuan, L.-X. (2011). Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries. Journal of Electroanalytical Chemistry, 660(1), 108–113. doi:10.1016/j.jelechem. 2011.06.013.
23. Gong, C., Deng, F., Tsui, C.-P., Xue, Z., Ye, Y. S., Tang, C.-Y., Zhou, X., Xie, X. (2014). PANI–PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries. J. Mater. Chem. A, 2(45), 19315–19323. doi:10.1039/c4ta04089a.
24. Cao, J., Hu, G., Peng, Z., Du, K., & Cao, Y. (2015). Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries. Journal of Power Sources, 281, 49–55. doi:10.1016/j.jpowsour.2015.01.174.
25. Zhang, Z., Wang, J., Chou, S., Liu, H., Ozawa, K. & Li, H. (2013). Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries . Electrochimica Acta, 108, 820826.
26. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421–443. doi:10.1016/j.jpowsour.2013.11.103.
27. Lai, C., Zhang, H. Z., Li, G. R., & Gao, X. P. (2011). Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. Journal of Power Sources, 196(10), 4735–4740. doi:10.1016/j.jpowsour.2011.01.077.
28. Cao, Y., Xiao, L., Sushko, M. L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z., Saraf, L.V., Yang, Z., Liu, J. (2012). Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 12(7), 3783–3787. doi:10.1021/nl3016957.
29. Chen, J., Liu, Y., Li, W., Wu, C., Xu, L., & Yang, H. (2015). Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. Journal of Materials Science, 50(16), 5466–5474. doi:10.1007/s10853-015-9092-z.
30. Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., Liu, J. (2012). A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 24(9), 1176– 1181. doi:10.1002/adma.201103392.
31. Goto, F., Abe, K., Ikabayashi, K., Yoshida, T., & Morimoto, H. (1987). The polyaniline/lithium battery. Journal of Power Sources, 20(3-4), 243–248. doi:10.1016/0378-7753(87)80118-0.
32. Li, R., Lixin, W., Haoyuan, A., & Fuqiang, Z. (2007). Study of lithium/polypyrrole secondary batteries with Lithium as cathode and polypyrrole anode. Rare Metals, 26(6), 591–600. doi:10.1016/s1001-0521(08)60012-1.
33. Shi, H.-Y., Ye, Y.-J., Liu, K., Song, Y., & Sun, X. (2018). A Long Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie International Edition. doi:10.1002/anie.201808886.
34. Barnes, A., Despotakis, A., Wong, T. C. P., Anderson, A. P., Chambers, B., & Wright, P. V. (1998). Towards a "smart window" for microwave applications. Smart Materials and Structures, 7(6), 752–758. doi:10.1088/0964-1726/7/6/003.
35. Pagès, H., Topart, P., & Lemordant, D. (2001). Wide band electrochromic displays based on thin conducting polymer films. Electrochimica Acta, 46(1314), 2137–2143. doi:10.1016/s00134686(01)00392-9.
36. Katore, M. S., Nemade, K. R., Yawale, S. S., & Yawale, S. P. (2016). Photovoltaic application of architecture ITO/graphene oxide–polyaniline/aluminum. Journal of Materials Science: Materials in Electronics, 27(9), 9828–9835. doi:10.1007/s10854-016-5049-5.
37. Tan, S., Zhai, J., Xue, B., Wan, M., Meng, Q., Li, Y., Jiang, L., Zhu, D. (2004). Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells. Langmuir, 20(7), 2934– 2937. doi:10.1021/la036260m.
38. Bejbouji, H., Vignau, L., Miane, J.L., Dang, M.-T., Oualim, E.M., Harmouchi, M., & Mouhsen, A. (2010). Polyaniline as a hole injection layer on organic photovoltaic cells. Solar Energy Materials and Solar Cells, 94(2), 176–181. doi:10.1016/j.solmat.2009.08.018.
39. Nemade, K., Dudhe, P., & Tekade, P. (2018). Enhancement of photovoltaic performance of polyaniline/graphene composite-based dye-sensitized solar cells by adding TiO2 nanoparticles. Solid State Sciences, 83, 99–106. doi:10.1016/j.solidstatesciences.2018.07.009.
40. Sangiorgi, N., & Sanson, A. (2017). Influence of electropolymerized polypyrrole optical properties on bifacial Dye-Sensitized Solar Cells. Polymer, 125, 208–216. doi:10.1016/j.polymer.2017.08.014.
41. Scrosati, B. (1991). Conducting Polymers and Their Applications. Materials Science Forum, 42, 207–220. doi:10.4028/www.scientific.net/msf.42.207.
42. Das, T.K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 51(14), 1487–1500. doi:10.1080/03602559.2012.710697.
43. Zhan, C., Yu, G., Lu, Y., Wang, L., Wujcik, E., & Wei, S. (2017). Conductive polymer nanocomposites: a critical review of modern advanced devices. Journal of Materials Chemistry C, 5(7), 1569–1585. doi:10.1039/c6tc04269d.
44. Simotwo, S.K., & Kalra, V. (2016). Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries. Current Opinion in Chemical Engineering, 13, 150– 160. doi:10.1016/j.coche.2016.09.001.
45. Luo, Y., Guo, R., Li, T., Li, F., Liu, Z., Zheng, M., Wang, B., Yang, Z., Luo, H., Wan, Y. (2018). Applications of polyaniline for Li-ion batteries, Li-sulfur batteries and supercapacitors. ChemSusChem. doi:10.1002/cssc.201802186.
Рецензия
Для цитирования:
Межуев Я.О., Штильман М.И., Коршак Ю.В. Применение полианилина и полипиррола в электронике. Пластические массы. 2020;(7-8):28-31. https://doi.org/10.35164/0554-2901-2020-7-8-28-31
For citation:
Mezhuev Y.O., Shtilman M.I., Korshak Yu.V. Application of polyaniline and polypyrrole in electronics. Plasticheskie massy. 2020;(7-8):28-31. (In Russ.) https://doi.org/10.35164/0554-2901-2020-7-8-28-31