Modification of polyacrylamide with hydroxyl- and carboxyl-containing compounds
https://doi.org/10.35164/0554-2901-2020-5-6-25-28
Abstract
Modification of polyacrylamide with hydroxyl and carboxyl-containing compounds was studied. The effect of modifiers on the glass transition temperature was studied using thermomechanical analysis and differential scanning calorimetry. Infrared spectroscopy of modified compositions was also performed to study the effect of modifiers on the chemical structure of polyacrylamide. It is established that the selected modifiers can be used as plasticizers for polyacrylamide.
About the Authors
H. E. LitosovRussian Federation
Saint-Petersburg.
I. M. Dvorko
Russian Federation
Saint-Petersburg.
N. A. Lavrov
Russian Federation
Saint-Petersburg.
N. A. Chistyakov
Russian Federation
Saint-Petersburg.
A. A. Murawski
Russian Federation
Saint-Petersburg.
References
1. Nadakavukaren A., Caravanos J. Our global environment: A health perspective. - Waveland Press, 2020.
2. Bai B., Zhou J., Yin M.A Comprehensive review of polyacrylamide polymer gels for conformance control // Petroleum exploration and development. - 2015. - V. 42. - №4. - P. 525—532.
3. Yao C., Enhanced oil recovery using micron-size polyacrylamide elastic microspheres: underlying mechanisms and displacement experiments // Industrial & Engineering Chemistry Research. - 2015. - V. 54. - №43. - P. 10925—10934.
4. Gou S., Novel biodegradable graft-modified water-soluble copolymer using acrylamide and konjac glucomannan for enhanced oil recovery // Industrial & Engineering Chemistry Research. - 2017. -V. 56. - №4. - P. 942—951.
5. Ahmad H.M., Kamal M.S., Al-Harthi M.A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids // Journal of Molecular Liquids. - 2018. - V. 252. - P. 133—143.
6. Sikes C.S., Hochwalt M.A., Sikes T.D. Amino acid, carbohydrate and acrylamide polymers useful as flocculants in agricultural and industrial settings : Pat. 9994767 USA. - 2018.
7. Laskar R.A., Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines // International journal of biological macromolecules. - 2018. - V. 109. - P. 167—179.
8. Mukhopadhyay P. pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery // Carbohydrate polymers. - 2014. - V. 112. - P. 627—637.
9. Du J. Hemicellulose isolated from waste liquor of viscose fiber mill for preparation of polyacrylamide-hemicellulose hybrid films // International journal of biological macromolecules. - 2018. - V. 108. - P. 1255—1260.
10. Tangri A. Polyacrilamide based hydrogels: Synthesis, Characterization and applications // International Journal of Pharmaceutical, Chemical & Biological Sciences. - 2014. - V. 4. - №4. - P. 951—959.
11. Tan H. A Simple and environment-friendly approach for synthesizing macroporous polymers from aqueous foams // Journal of colloid and interface science. - 2018. - V. 509. - P. 209—218.
12. Dmitriev I. Swelling behavior and network characterization of hydrogels from linear polyacrylamide crosslinked with glutaraldehyde // Materials Today Communications. - 2015. - V. 4. - P. 93—100.
13. Feng H. Poly(acrylamide)-MWNTs hybrid hydrogel with extremely high mechanical strength // Open Chemistry. - 2016. - V. 14. - №1. - P. 150—157.
14. Shatat R.S., Niazi S.K., Ariffin A. Synthesis and Characterization of Different Molecular Weights Polyacrylamide // IOSR Journal of Applied Chemistry. - 2017. - P. 67—73.
15. Зимагулова Л.А., Сидоров Ю.Д., Василенко С.В., Поливанов М.А. Влияние пластификаторов на физико-механические свойства пленочных материалов на основе полиакриламида // Вестник Казанского технологического университета. - 2015. - Т. 18. -№23. - С. 67—69.
16. Anikeeva A.N., Zarubinskii G.M., Danilov S.N. Xylitol and its derivatives // Russian Chemical Reviews. - 1976. - V. 45. - №1. - P. 43.
17. Крыжановский В.К., Бурлов В.В., Паниматченко А.Д., Крыжа-новская Ю.В. Технические свойства полимерных материалов: Учеб. справ. пособие. — СПб.: Профессия, 2005. — 248 с.
18. Гребенева Т.А., Дятлов В.А., Прудсков Б.М., Колотилова Н.В., Ильина М.Н., Киреев В.В. Термическая имидизация акриловых сополимеров, содержащих нитрильные, кислотные и амидные звенья // Пластические массы. - 2011. - №12. - С. 19—22.
19. Al-Sabagh A.M., Kandile N.G., El-Ghazawy R.A., Noor El-Din M.R., El-sharaky E.A. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants // Egyptian Journal of Petroleum. — 2013. V. 22. — №4. — P. 531—538.
20. Тарасевич Б.Н. ИК спектры основных классов органических соединений. Справочные материалы. - М.: МГУ, 2012. - 55 с.
21. Литосов Г.Э., Дворко И.М., Муравский А.А, Чистяков Н.А. Исследование свойств композиций полиакриламида методами термического анализа // Сб. тезисов VIII научно-техническая конференция студентов, аспирантов, молодых ученых «Неделя науки», СПбГТИ(ТУ), СПб.: изд-во СПбГТИ(ТУ), 2019. - С. 192.
22. Литосов Г.Э., Дворко И.М. Исследование свойств композиций полиакриламида методом дифференциально сканирующей калориметрией // Материалы научной конференции "Традиции и Инновации", посвященной 190-й годовщине образования Санкт-Петербургского государственного технологического института (технического университета). - 2018. - С. 116
Review
For citations:
Litosov H.E., Dvorko I.M., Lavrov N.A., Chistyakov N.A., Murawski A.A. Modification of polyacrylamide with hydroxyl- and carboxyl-containing compounds. Plasticheskie massy. 2020;(5-6):25-28. (In Russ.) https://doi.org/10.35164/0554-2901-2020-5-6-25-28