Preview

Plasticheskie massy

Advanced search

Production and properties of composites based on polymethacrylimides and carbon nanotubes

https://doi.org/10.35164/0554-2901-2019-7-8-49-51

Abstract

The eff ect of Taunit grade carbon nanotubes on the kinetic parameters of block radical copolymerization of acrylonitrile and methacrylic acid in the presence of foaming agents (tert-butyl alcohol – N-methylformamide system) was studied. Thermoimidization and foaming of acrylonitrile and methacrylic acid copolymers produced foamed nanocomposites based on polymethacrylimides, carbon nanotubes and finely dispersed silicon oxide. It is shown that the dependences of the density of composites and their strength characteristics on the content of carbon nanotubes pass through a maximum.

About the Authors

K. V. Shirshin
JSC V.A. Kargin Scientific Research Institute of Chemistry and Technology of Polymers with a pilot plant; R.E. Alekseev Nizhny Novgorod State Technical University
Russian Federation
Dzerzhinsk, Nizhny Novgorod Region


P. V. Kornienko
JSC V.A. Kargin Scientific Research Institute of Chemistry and Technology of Polymers with a pilot plant
Russian Federation
Dzerzhinsk, Nizhny Novgorod Region


O. A. Kazartcev
R.E. Alekseev Nizhny Novgorod State Technical University
Russian Federation
Nizhny Novgorod


E. Kh. Fattakhova
JSC V.A. Kargin Scientific Research Institute of Chemistry and Technology of Polymers with a pilot plant
Russian Federation
Dzerzhinsk, Nizhny Novgorod Region


N. P. Shishkina
JSC V.A. Kargin Scientific Research Institute of Chemistry and Technology of Polymers with a pilot plant
Russian Federation
Dzerzhinsk, Nizhny Novgorod Region


A. P. Sivokhin
R.E. Alekseev Nizhny Novgorod State Technical University
Russian Federation
Nizhny Novgorod


References

1. Wang B., Shi Y., Zhou C., Li T. Failure mechanism of PMI foam core sandwich beam in bending. // Int. J. Simul. Multisci. Des. Optim. - 2015. - V. 6. - P. A8.

2. Seibert H.F. PMI foam cores find further applications. // Reinforced Plastics. - 2000. - Т. 44, № 1. - С. 36-38.

3. Seibert H.F. Applications for PMI foams in aerospace sandwich structures. // Reinforced Plastics. - 2006. - V. 50, № 1. - P. 44-48.

4. Gänzler V.W., Huch P., Metzger W., Schröder G. Die polymeranaloge Bildung von Imidgruppen in Methacrylsäure/Methacrylnitril-Copolymeren. // Die Angewandte Makromolekulare Chemie. - 1970. - V. 11, № 1. - P. 91-108.

5. Kornienko P.V., Shirshin K.V., Gorelov Y.P., Kuznetsova A.V., Chervyakova G.N., Khokhlova T.A. The Production of Polyimide Foam Materials Based on Acrylonitrile and (Meth)Acrylic Acid. // International Polymer Science and Technology. - 2015. - Т. 42, № 1. - С. 21-26.

6. Kornienko P.V., Shirshin K.V., Lukonin V.P. Specific Features of the Obtainment of Imide Forming Copolymers of Acrylonitrile and Methacrylic Acid in Concentrated Solutions of N-Substituted Amides. // Polymer Science, Series B. - 2018. - V. 60, № 5. - P. 549-554.

7. Kornienko P.V., Shirshin K.V., Gorelov Y.P. Preparation of foamed polymethacrylimide structural materials from cross-linked copolymers of acrylonitrile and methacyrlic acid. // Russ. J. Appl. Chem. - 2012. - V. 85, № 11. - P. 1748-1752.

8. Kornienko P.V., Shirshin K.V., Gorelov Y.P. Preparation and properties of foamed materials based on acrylonitrile-methacrylic acid copolymers. // Russ. J. Appl. Chem. - 2013. - Т. 86, № 1. - С. 87-91.

9. Liu T.-M., Zhang G.-C., Liang G.-Z., Chen T., Zhang C. In situ cyclization reactions during the preparation of high-performance methacrylic acid/acrylonitrile/acrylamide ternary copolymer foam. // J. Appl. Polym. Sci. - 2007. - V. 106, № 3. - P. 1462-1469.

10. Chen T., Zhang G., Zhao X. Structure and properties of AN/MAA/ AM copolymer foam plastics. // J. Polym. Res. - 2010. - Т. 17, № 2. - С. 171-181.

11. Патент US20050090568A1 / Stein P., Geyer W., Barthel T.; опубл. 28.04.2005. 12. Патент DE10052239 (A1) / Servaty S., Stein P., Barthel T., Geyer W.; опубл. 02.05.2002.

12. Патент CN103524968 (A) / Lu P., Wei T., Zhao Q.; опубл. 22.01.2014.

13. Патент CN101289565 (A) / Yimin C.; опубл. 22.10.2008.

14. Патент CN101974191 (A) / Pingcai L.; опубл. 16.02.2011.

15. Zhang Z., Xu M., Li B. Preparation and characterization of polymethacrylimide/silicate foam. // Polym. Adv. Technol. - 2018. - V. 29, № 12. - P. 2982-2991.

16. Peng L.G., Zhang G.C., Yu X.G., Li Y. Preparation and Low Frequency Sound Absorption Properties of Silicate Composite Material. // Advanced Materials Research. - 2012. - V. 482-484. - P. 1338-1342.

17. Патент US4996109 (A) / Krieg M., Rau N., Ude W.; опубл. 26.02.1991.

18. Патент DE10212235 (A1) / Stein P., Geyer W., Barthel T., Seibert H., Maier L., Jahn T.; опубл. 02.10.2003.

19. Патент RU2003131190 (A) / Брайтвизер Ф.К., Штайн П., Гайер В., Бартель Т.; опубл. 10.05.2005.

20. Кондрашов С.В., Гуняева А.Г., Шашкеев К.А., et al. Электропроводящие гибридные полимерные композиционные материалы на основе нековалентно функционализированных углеродных нанотрубок. // Труды ВИАМ. - 2016. - № 2. - С. 81-93.

21. Кондрашов С.В., Шашкеев К.А., Попков О.В., Соловьянчик Л.В. Перспективные технологии получения функциональных материалов конструкционного назначения на основе нанокомпозитов с УНТ. // Труды ВИАМ. - 2016. - № 3. - С. 377-387.

22. Макунин А.В., Чеченин Н.Г. Полимер-наноуглеродные композиты для космических технологий. Часть 1. Синтез и свойства наноуглеродных структур: учебное пособие М.: Университетская книга, 2011. - 150 с.

23. Ткачев А.Г. Углеродный наноматериал Таунит – структура, свойства, производство и применение. // Перспективные материалы. - 2007. - № 3. - С. 5-9.


Review

For citations:


Shirshin K.V., Kornienko P.V., Kazartcev O.A., Fattakhova E.Kh., Shishkina N.P., Sivokhin A.P. Production and properties of composites based on polymethacrylimides and carbon nanotubes. Plasticheskie massy. 2019;(7-8):49-51. (In Russ.) https://doi.org/10.35164/0554-2901-2019-7-8-49-51

Views: 578


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)