Preview

Plasticheskie massy

Advanced search

The heat of polyethylene thermal decomposition

https://doi.org/10.35164/0554-2901-2017-9-10-30-32

Abstract

The heat of thermal decomposition of low density polyethylene (D Hd ) is determined by differential scanning calorimetry at heating rates ( b ) from 0.5 to 40 K/min. It is shown that D Hd increases with decreasing b, reaching a value of ~ 3000 J/g at b ≤ 1.0 K/min. One of the main reasons for the high values of the heat of decomposition can be the formation of products with low molecular weight under the experimental conditions.

About the Authors

A. A. Rogozina
Federal Center for Dual-Use Technologies “Soyuz”
Russian Federation


I. A. Koptelov
National Research Nuclear University “MEPhI”
Russian Federation


A. A. Matveev
Federal Center for Dual-Use Technologies “Soyuz”
Russian Federation


A. A. Koptelov
Federal Center for Dual-Use Technologies “Soyuz”
Russian Federation


E. S. Yushkov
National Research Nuclear University “MEPhI”
Russian Federation


References

1. Stoliarov S.I., Walters R.N. Determination of heats of gasification of polymers using differential scanning calorimetry // Polymer Degradation and Stability. 2008. V. 93. P. 422-427.

2. Вунделих Б., Баур Г. Теплоемкость линейных полимеров. М.: Мир, 1972. 240 с. (Wunderlich B., Baur H. Heat capacities of linear high polymers. New York: Springer, 1970).

3. Frederick W.J., Mentzer C.C. Determination of heats of volatilization for polymers by differential scanning calorimetry // Journal of Applied Polymer Science. 1975. V. 19. P. 1799-1804.

4. Staggs J.E.J. The heat of gasification of polymers // Fire Safety Journal. 2004. V. 39. P. 711-720.

5. Cozzani V., Nicolella C., Petarca L., Rovatti M., Tognotti L. A fundamental study of conventional pyrolysis of a refuse-derived fuel // Industrial and Engineering Chemistry Research. V. 34. P. 2006-2020.

6. Agarval G., Lattimer B. Method for measuring the standard heat of decomposition of materials // Thermochimica Acta. 2012. V. 545. P. 34-47.

7. Bruns M.C., Ezekoye O.A. Modeling differential scanning calorimetry of thermally degrading thermoplastics // Journal of Analytical and Applied Pyrolysis. 2014. V. 105. P. 241-251.

8. Murata K., Sato K., Sakata Y. Effect of pressure on thermal degradation of polyethylene // Journal of Analytical and Applied Pyrolysis. 2004. V. 71. P. 569-589.

9. Stern K.H. High temperature properties and thermal decomposition of inorganic salts with oxianions. USA, Florida: CPC Press LLC, 2001.

10. Савада Х. Термодинамика полимеризации. М.: Химия, 1979. 312 с. (Savada H. Thermodynamics of polymerization. New York: Marcel Dekker, 1976).

11. Splistone P.L., Johnson W.H. The enthalpies of combustion and formation of linear polyethylene // Journal of Research of the National Bureau of Standards - A. Physics and Chemistry. 1974. V. 78A. N 5. P. 611-616.

12. Westerhout R.W.J., Waanders J., Kuipers J.A.M., van Swaaij W.P.M. Kinetics of low-temperature pyrolysis of polyethene, polypropene and polystyrene modelling, experimental determination, and comparison with literature models and data // Industrial & Engineering Chemistry Research. 1997. V. 36. N 6. P. 1955-1964.

13. Gaca P., Drzewiecka M., Kaleta W., Kozubek H., Nowinska K. Catalic degradation of polyethylene over mesoporous molecular sieve MCM-41 modified with heteropoly compounds // Polysh Journal of Environmental Studies. 2008. V. 17. N 1. P. 25-31.

14. Fernandes V.J., Araujo A.S., Fernandes G.J.T. Catalytic degradation of polyethylene evaluated by TG // Journal of Thermal Analysis. 1997. V. 49. N 1. P. 255-260.

15. Sojak L., Kubinec R., Jurdakova H., Bajus M. GC-MS of polyethylene and polypropylene thermal cracking products // Petroleum and Coal. 2006. V. 48. N 1. P. 1-14.

16. Iida T.A., Honda K., Nozaki H. Identification of normal paraffins and olefins from thermal decomposition products of polyethylene // Bulletin of the Chemical Society of Japan. 1973. V. 46. N 5. P. 1480-1482.

17. Коптелов А.А., Милёхин Ю.М., Шлёнский О.Ф. Тепловые эффекты термического разложения полимеров // Высокомолекулярные соединения. Серия А. 2005. Т. 47. № 9. С. 1628-1634. (Koptelov A.A., Milekhin Yu.M., Shlenskii O.F. Heat effects in Thermal Degradation of Polymers // Polymer Science. 2005. Ser. A. V. 47. N 9. P. 948-953).

18. Коптелов А.А., Коптелов И.А. Статистическая модель термического разложения линейных полимеров // Высокомолекулярные соединения. Серия Б. 2009. Т. 51. № 8. С. 1578-1584. (Koptelov A.A., Koptelov I.A. Statistical Model of Thermal Degradation of Linear Polymers // Polymer Science. Ser. B. 2009. V. 51. N 7-8. P. 313-319).

19. Коптелов А.А., Карязов С.В., Шлёнский О.Ф. Особенности термического разложения полимеров при давлениях выше атмосферного // Высокомолекулярные соединения. Серия Б. 2004. Т. 46. № 6. С. 1093-1098. (Koptelov A.A., Karyazov S.V., Shlenskii O.F. Features of thermal degradation of polymers under pressures above atmospheric // Polymer Science. Ser. B. 2004. V. 46. N 5-6. Р. 163-167.)


Review

For citations:


Rogozina A.A., Koptelov I.A., Matveev A.A., Koptelov A.A., Yushkov E.S. The heat of polyethylene thermal decomposition. Plasticheskie massy. 2017;(9-10):30-32. (In Russ.) https://doi.org/10.35164/0554-2901-2017-9-10-30-32

Views: 570


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)