Polyurethane gel electrolytes based on organophosphorus branched ionomer polyols
https://doi.org/10.35164/0554-2901-2025-06-21-23
Abstract
Ionic conductivity and features of the construction of the supramolecular structure of polyurethane gel electrolytes (PGE) obtained using organophosphorus branched ionomer polyols (OPIP) modified with succinic anhydride (SA) have been studied. It is shown that the use of SA in the synthesis of OPIP led to a fourfold increase in the ionic conductivity of PGE. It was found that the combination of phosphate anions into clusters and the introduction of carboxylate anions into the structure of clusters leads to a change in the packaging of both OPIP and the polyurethanes obtained using them.
About the Authors
R. S. DavletbaevRussian Federation
A. A. Nizamov
Russian Federation
O. V. Yarmolenko
Russian Federation
O. O. Sazonov
Russian Federation
I. M. Davletbaeva
Russian Federation
References
1. Shen H., Wu G., Ma T., Li M., Tian Y., Chen S., Cai S,. Li Z. Lithiophilic interlayer with electrolyte-reservoir and dendrite-buffer for high-performance lithium metal batteries // Nanomaterials. 2025. Vol. 15. P. 710. DOI:10.1021/acsenergylett.9b01987.
2. Senthilkumar K.K., Thiruvengadathan R., Raghava R.B.T.S. Recent advancements in Na super ionic conductor-incorporated composite polymer electrolytes for sodium-ion battery application // Electro chem. 2025. Vol. 6. P. 6. DOI:10.3390/electrochem6010006.
3. Sare H., Dong D. Electrochromic polymers: from electrodeposition to hybrid solid devices // Energies. 2024. Vol. 17. P. 232. DOI:10.3390/en17010232.
4. Gao Y., Yan, Z., Gray J. L., He X., Wang D., Chen T., Huang Q., Li Y.C., Wang H., Kim S.H., Mallouk T.E., Wang D. Polymer inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions // Nat. Mater. 2019. Vol. 18. P. 384–389. DOI: 10.1038/s41563-019-0305-8.
5. Chen S., Wen, K., Fan J., Bando Y., Golberg D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes // J. Mater. Chem. 2018. Vol. 6. P. 11631–11663. DOI:10.1039/C8TA03358G.
6. Cho Y.-G., Hwang C., Cheong D.S., Kim Y.-S., Song H.-K. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems // Adv. Mater. 2019. Vol. 31, N20. P. 1804909. DOI: 10.1038/s41563-019-0305-8.
7. Shin I., Nam J., Lee K., Kim E., Kim T.-H. Poly(ethylene glycol) (PEG)-crosslinked poly(vinyl pyridine)-PEG-poly(vinyl pyridine) based triblock copolymers prepared by RAFT polymerization as novel gel polymer electrolytes // Polym. Chem. 2018. Vol. 9. P. 5190–5199. DOI:10.1039/C8PY01097H.
8. Ma Y., Ma J., Chai J., Liu Z., Ding G., Xu G., Liu H., Chen B., Zhou X., Cui G., Chen L. Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries // ACS Appl. Mater. Interfaces. 2017. Vol. 9. P. 41462–41472. DOI:10.1021/acsami.7b11342.
9. Gao L., Li J.X., Sarmad B., Cheng B.W., Kang W.M., Deng N.P. A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries // Nanoscale. 2020. Vol. 12. P. 14279-14289. DOI:10.1039/d0nr04244g.
10. Liang Y.F., Deng S.J., Xia Y., Wang X.L., Xia X.H., Wu J.B., Gu C.D., Tu J.P. A superior composite gel polymer electrolyte of Li7La3Z r2O12 poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries // Mater. Res. Bull. 2018. Vol. 102. P. 412–417. DOI:10.1016/j.materresbull.2018.02.051.
11. Lv Z., Tang Y., Dong S., Zhou Q., Cui G. Polyurethane-based polymer electrolytes for lithium Batteries: Advances and perspectives // Chem. Eng. J. 2022. Vol. 430. P. 132659. DOI:10.1039/d4ra06863g.
12. Lin Z., Guo X., Yang Y., Tang M., Wei Q., Yu H. Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery // J. Energy Chem. 2021. Vol. 52. P. 67–74. DOI:10.1016/j.jechem.2020.04.052.
13. Gao Y., Wang C., Wang H., Feng C., Pan H., Zhang Z., He J., Wang Q. Polyurethane/LLZTO solid electrolyte with excellent mechanical strength and electrochemical property for advanced lithium metal battery // Chem. Eng. J. 2023. Vol. 474. P. 145446. DOI:10.1016/j.cej.2023.145446.
14. Jaumaux P., Liu Q., Zhou D., Xu X., Wang T., Wang Y., Kang F., Li B., Wang G. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries // Angew. Chem. Int. Ed. 2020. Vol. 59. P. 91349142. DOI:10.1002/anie.202001793.
15. Wang H., Li X., Zeng Q., Li Z., Liu Y., Guan J., Jiang Y., Chen L., Cao Y., Li R. A novel hyperbranched polyurethane solid electrolyte for room temperature ultra-long cycling lithium-ion batteries // Energy Storage Mater. 2024. Vol. 66. P. 103188. DOI:10.1016/j.ensm.2024.103188.
16. Davletbaeva I.M., Nizamov A.A., Yudina A.V., Baymuratova G.R., Yarmolenko O.V., Sazonov O.O., Davletbaev R.S. Gel-polymer electrolytes based on polyurethane ionomers for lithium power sources // RSC Adv. 2021. Vol. 11. P. 21548. DOI:10.1039/D1RA01312B
Review
For citations:
Davletbaev R.S., Nizamov A.A., Yarmolenko O.V., Sazonov O.O., Davletbaeva I.M. Polyurethane gel electrolytes based on organophosphorus branched ionomer polyols. Plasticheskie massy. 2025;(6):21-23. (In Russ.) https://doi.org/10.35164/0554-2901-2025-06-21-23































