The structure and rheological properties of block copolymers based on butadiene and styrene
https://doi.org/10.35164/0554-2901-2025-04-22-25
Abstract
The influence of structure on the rheological properties of butadiene-styrene block copolymers of linear (DSTL 30-01), radial (DSTR 30-00) structure, as well as linear thermoplastic elastomer Kraton G 1650E (SEBS) with hydrogenated elastic block has been investigated by methods of infrared spectroscopy and rotorless rheometry. The flow curves of thermoplastic elastomers in the temperature range from 140°C to 190°C were obtained. It has been established that they are characterized by the effect of an extreme decrease in viscosity in the range from 155°C to 170°C, associated with a change in the physical state of the polystyrene phase and possible partial mutual dissolution of styrene and butadiene fragments.
About the Authors
S. V. EmelyanovRussian Federation
Moscow
V. E. Bazarova
Russian Federation
Moscow
References
1. Holden G. Understanding thermoplastic elastomers. Munich: Hanser. 2000. P. 15–35. ISBN: 1569902895 / 9781569902899.
2. Холден Д., Крихельдорф Х.Р., Куирк Р.П. Термоэластопласты. СПб.: Профессия, 2011. 720 с. ISBN: 978-5-91884-033-7.
3. Yu X. et.al. Morphology and mechanical properties of styrene–ethylene/butylene–styrene triblock copolymer/high-density polyethylene composites // Journal of Applied Polymer Science. 2008. Vol. 107, N 2. P. 726–731. DOI: 10.1002/app.26967.
4. Bassani A., Pessan L.A., Hage E. Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: Effects of mixing condition and elastomer content // Journal of applied polymer science. 2001. Vol. 8, N 9. P. 2185–2193. DOI: 10.1002/app.2066.
5. Raha S., Kao N., Bhattacharya S. N. Modification of styrene–ethylene/butylene–styrene copolymer microstructure by polystyrene homopolymer and evolution of a cocontinuous blend morphology // Polymer Engineering & Science. 2012. Vol. 52, № 12. P. 2559–2572. DOI: 10.1002/pen.23217.
6. Гордеева И.В. Влияние процесса старения на свойства дорожных битумных вяжущих, содержащих термоэластопласты и резиновую крошку, получаемую методом высокотемпературного сдвигового измельчения // Тонкие химические технологии. 2014. Т. 3, № 3. С. 64–70. EDN: SGLJYV.
7. Zhang F., Hu C. The research for thermal behaviour, creep properties and morphology of SBS-modified asphalt // Journal of Thermal Analysis and Calorimetry. 2015. N121. P. 651–661. DOI: 10.1007/s10973-015-4595-z.
8. Гордеева И.В., Наумова Ю.А., Дударева Т.В., Красоткина И.А., Никольский В.Г. Композиционнный модификатор асфальтобетонов, получаемый методом высокотемпературного сдвигового соизмельчения шинной резины и СБС-термоэластопласта // Тонкие химические технологии. 2018. Т. 13, № 5. С. 38–48. DOI: 10.32362/2410-6593-2018-13-5-38-48.
9. Chen W.C., Lai S.M., Chen C.M. Preparation and properties of styrene–ethylene–butylene–styrene block copolymer/clay nanocomposites: I. Effect of clay content and compatibilizer types // Polymer international. 2008. Vol. 57, № 3. P. 515–522. DOI: 10.1002/pi.2377.
10. Laus M., Francescangeli O., Sandrolini F. New hybrid nanocomposites based on an organophilic clay and poly(styrene-b-butadiene) copolymers // Journal of Materials Research. 1997. Vol. 12. P. 3134–3139. DOI: 10.1557/JMR.1997.0409.
11. Аскадский А.А., Андрющенко Т.А., Зубов П.И. Структура и свойства блоксополимеров полистирола с полибутадиеном // Успехи химии. 1984. Т. 53, № 8. С. 1380–1402. DOI: 10.1070/RC1984v053n08ABEH003124.
12. Matsen M.W., Schick M. Self-assembly of block copolymers // Current Opinion in Colloid & Interface Science. 1996. Vol. 1, № 3. P. 329–336. DOI: 10.1016/S1359-0294(96)80128-2.
13. Bates F.S. and et. al. Influence of shear on the hexagonal-to-disorder transition in a diblock copolymer melt // Macromolecules. 1994. Vol. 27, № 20. P. 5934–5936. DOI: 10.1021/ma00098a060.
14. Дехант Й., Данц Р., Киммер В., Шмольке Р. Инфракрасная спектроскопия полимеров / пер. с немецкого В. Архангельского. под ред. Э.Ф. Олейника. М.: Химия. 1976. 473 с.
15. Roe R.-J., Fishkis M., Chang J.C. Small-angle x-ray diffraction study of thermal transition in styrene-butadiene block copolymers // Macromolecules. 1981. Vol. 14. P. 1091–1103. DOI: 10.1021/ma50005a040.
16. Canevarolo S.V., Birley A.W., Hemsley D.A. Molten State Transition in Thermoplastic Rubber // British Polymer Journal. 1986. Vol. 18. P. 191–195. DOI: 10.1002/pi.4980180310.
17. Canevarolo S. V., Mattoso L. H. Preferential plasticization of SBS triblock copolymer // British Polymer Journal. 1990. Vol. 22. P. 137–141. DOI: 10.1002/pi.4980220207.
18. Нестеров А.Е., Липатов Ю.С. Фазовое состояние растворов и смесей полимеров: Справочник. Киев: Наукова думка. 1987. 169 с.
19. Yongkun, W., Junjie, Y., Wenchao, T. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene) Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation // Applied Science. 2016. Vol. 6, № 11. P. 2–9. DOI: 10.3390/app6110333.
Review
For citations:
Emelyanov S.V., Bazarova V.E. The structure and rheological properties of block copolymers based on butadiene and styrene. Plasticheskie massy. 2025;(4):22-25. (In Russ.) https://doi.org/10.35164/0554-2901-2025-04-22-25