Preview

Пластические массы

Расширенный поиск

Структура и реологические свойства блоксополимеров на основе бутадиена и стирола

https://doi.org/10.35164/0554-2901-2025-04-22-25

Аннотация

Методами ИК-спектроскопии и безроторной реометрии исследовано влияние структуры на реологические свойства бутадиен-стирольных блоксополимеров линейного (ДСТЛ 30-01), радиального (ДСТР 30-00) строения, а также линейного термоэластопласта Kraton G 1650E (СЭБС) с гидрированным эластичным блоком. Получены кривые течения термоэластопластов в интервале температур от 140°С до 190°С. Установлено, что для них характерен эффект экстремального снижения вязкости от температуры в интервале от 155°С до 170°С, связанный с изменением физического состояния полистирольной фазы и возможным частичным взаиморастворением стирольных и бутадиеновых фрагментов.

Об авторах

С. В. Емельянов
ФГБОУВО МИРЭА – Российский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова)
Россия

Москва



В. Е. Базарова
ФГБОУВО МИРЭА – Российский технологический университет (Лаборатория керамических материалов и технологий)
Россия

Москва



Список литературы

1. Holden G. Understanding thermoplastic elastomers. Munich: Hanser. 2000. P. 15–35. ISBN: 1569902895 / 9781569902899.

2. Холден Д., Крихельдорф Х.Р., Куирк Р.П. Термоэластопласты. СПб.: Профессия, 2011. 720 с. ISBN: 978-5-91884-033-7.

3. Yu X. et.al. Morphology and mechanical properties of styrene–ethylene/butylene–styrene triblock copolymer/high-density polyethylene composites // Journal of Applied Polymer Science. 2008. Vol. 107, N 2. P. 726–731. DOI: 10.1002/app.26967.

4. Bassani A., Pessan L.A., Hage E. Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: Effects of mixing condition and elastomer content // Journal of applied polymer science. 2001. Vol. 8, N 9. P. 2185–2193. DOI: 10.1002/app.2066.

5. Raha S., Kao N., Bhattacharya S. N. Modification of styrene–ethylene/butylene–styrene copolymer microstructure by polystyrene homopolymer and evolution of a cocontinuous blend morphology // Polymer Engineering & Science. 2012. Vol. 52, № 12. P. 2559–2572. DOI: 10.1002/pen.23217.

6. Гордеева И.В. Влияние процесса старения на свойства дорожных битумных вяжущих, содержащих термоэластопласты и резиновую крошку, получаемую методом высокотемпературного сдвигового измельчения // Тонкие химические технологии. 2014. Т. 3, № 3. С. 64–70. EDN: SGLJYV.

7. Zhang F., Hu C. The research for thermal behaviour, creep properties and morphology of SBS-modified asphalt // Journal of Thermal Analysis and Calorimetry. 2015. N121. P. 651–661. DOI: 10.1007/s10973-015-4595-z.

8. Гордеева И.В., Наумова Ю.А., Дударева Т.В., Красоткина И.А., Никольский В.Г. Композиционнный модификатор асфальтобетонов, получаемый методом высокотемпературного сдвигового соизмельчения шинной резины и СБС-термоэластопласта // Тонкие химические технологии. 2018. Т. 13, № 5. С. 38–48. DOI: 10.32362/2410-6593-2018-13-5-38-48.

9. Chen W.C., Lai S.M., Chen C.M. Preparation and properties of styrene–ethylene–butylene–styrene block copolymer/clay nanocomposites: I. Effect of clay content and compatibilizer types // Polymer international. 2008. Vol. 57, № 3. P. 515–522. DOI: 10.1002/pi.2377.

10. Laus M., Francescangeli O., Sandrolini F. New hybrid nanocomposites based on an organophilic clay and poly(styrene-b-butadiene) copolymers // Journal of Materials Research. 1997. Vol. 12. P. 3134–3139. DOI: 10.1557/JMR.1997.0409.

11. Аскадский А.А., Андрющенко Т.А., Зубов П.И. Структура и свойства блоксополимеров полистирола с полибутадиеном // Успехи химии. 1984. Т. 53, № 8. С. 1380–1402. DOI: 10.1070/RC1984v053n08ABEH003124.

12. Matsen M.W., Schick M. Self-assembly of block copolymers // Current Opinion in Colloid & Interface Science. 1996. Vol. 1, № 3. P. 329–336. DOI: 10.1016/S1359-0294(96)80128-2.

13. Bates F.S. and et. al. Influence of shear on the hexagonal-to-disorder transition in a diblock copolymer melt // Macromolecules. 1994. Vol. 27, № 20. P. 5934–5936. DOI: 10.1021/ma00098a060.

14. Дехант Й., Данц Р., Киммер В., Шмольке Р. Инфракрасная спектроскопия полимеров / пер. с немецкого В. Архангельского. под ред. Э.Ф. Олейника. М.: Химия. 1976. 473 с.

15. Roe R.-J., Fishkis M., Chang J.C. Small-angle x-ray diffraction study of thermal transition in styrene-butadiene block copolymers // Macromolecules. 1981. Vol. 14. P. 1091–1103. DOI: 10.1021/ma50005a040.

16. Canevarolo S.V., Birley A.W., Hemsley D.A. Molten State Transition in Thermoplastic Rubber // British Polymer Journal. 1986. Vol. 18. P. 191–195. DOI: 10.1002/pi.4980180310.

17. Canevarolo S. V., Mattoso L. H. Preferential plasticization of SBS triblock copolymer // British Polymer Journal. 1990. Vol. 22. P. 137–141. DOI: 10.1002/pi.4980220207.

18. Нестеров А.Е., Липатов Ю.С. Фазовое состояние растворов и смесей полимеров: Справочник. Киев: Наукова думка. 1987. 169 с.

19. Yongkun, W., Junjie, Y., Wenchao, T. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene) Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation // Applied Science. 2016. Vol. 6, № 11. P. 2–9. DOI: 10.3390/app6110333.


Рецензия

Для цитирования:


Емельянов С.В., Базарова В.Е. Структура и реологические свойства блоксополимеров на основе бутадиена и стирола. Пластические массы. 2025;(4):22-25. https://doi.org/10.35164/0554-2901-2025-04-22-25

For citation:


Emelyanov S.V., Bazarova V.E. The structure and rheological properties of block copolymers based on butadiene and styrene. Plasticheskie massy. 2025;(4):22-25. (In Russ.) https://doi.org/10.35164/0554-2901-2025-04-22-25

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)