Preview

Plasticheskie massy

Advanced search

Change in molecular and thermal characteristics of thermoplastic biodegradable copolymer in FDM process

https://doi.org/10.35164/0554-2901-2025-03-49-52

Abstract

   The results of studies and changes in the molecular weight and thermal properties of the thermoplastic copolymer of microbiological origin 3-hydroxybutyrate-co-3-hydroxyvalerate P(3HB-co-3HV) in a multi-stage process, including repeated melting of the copolymer to obtain pellets, extrusion production of filaments and 3D printing itself, are presented. In the process of obtaining granulate, filaments and FDM 3D printing of three-dimensional samples, a minor change in temperature characteristics was recorded, including melting and thermal destruction temperatures, crystallization and glass transition, as well as a noticeable decrease in molecular weight (by 35 %). The recorded changes in the molecular weight and temperature characteristics of the P(3HB-co-3HV) copolymer during processing made it possible to obtain fi laments for 3D printing and print 3D samples whose parameters correspond to those for bone-plastic materials and products.

About the Authors

E. G. Kiselev
Institute of Biophysics SB RAS FRC «Krasnoyarsk Sciencе Center SB RAS»; Siberian Federal University
Russian Federation

660041; Krasnoyarsk



A. V. Demidenko
Institute of Biophysics SB RAS FRC «Krasnoyarsk Sciencе Center SB RAS»; Siberian Federal University
Russian Federation

660041; Krasnoyarsk



T. G. Volova
Institute of Biophysics SB RAS FRC «Krasnoyarsk Sciencе Center SB RAS»; Siberian Federal University
Russian Federation

660041; Krasnoyarsk



References

1. Islam A. Md., Mobarak H. Md., Rimon H. I. Md., Zobair Al Mahmu Md., Ghosh J., Ahmed S. M. Md., Hossain N. Additive manufacturing in polymer research: Advances, synthesis, and aррlications // Polymer Testing, 2024. N 132. P. 108364. DOI: 10.1016/j.polymertesting.2024.108364.

2. Alghamdi S.S., John S., Roy Choudhury N., Dutta N.K., Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges // Polymers, 2021. N 13. P. 753. DOI: 10.3390/polym13050753.

3. Sala D., Richert M. Perspectives of Additive Manufacturing in 5.0 Industry // Materials, 2025. N 18. P. 429. DOI: 10.3390/ma18020429.

4. Yap Y.L., Tan Y.S. E., Tan H. K. J., Peh Z. K., Low X.Y., Yeong W.Y., Tan, C.S.H., Laude A. 3D printed bio-models for medical aррlications // Rapid Prototyping Journal. 2017. N 23 (2). P. 227–235. DOI: 10.1108/RPJ-08-2015-0102.

5. Scott C.S. Apparatus and Method for Creating Three-dimensional Objects Patent US 5121329-A, 29 November 1989.

6. Joseph T.M., Kallingal A., Suresh A.M., Mahapatra D.K., Hasanin M.S., Haponiuk J., Thomas S. 3D printing of polylactic acid: recent advances and opportunities // International Journal of Advanced Manufacturing Technology, 2023. N 125. Pp. 1015–1035. DOI: 10.1007/s00170-022-10795-y.

7. Tumer E.H., Erbil H.Y. Extrusion-Based 3D Printing applications of PLA Composites : A review // Coatings. 2021. N 11. P 390. DOI: 10.3390/coatings11040390.

8. Dasgupta A., Dutta P. A Comprehensive Review on 3D Printing Technology: Current applications and Challenges // Jordan Journal of Mechanical and Industrial Engineering. 2022. N 16. Pp. 529–542. ISSN 1995-6665.

9. Bassand C., Benabed L., Charlon S., Verin J., Freitag J., Siepmann F., Soulestin J., Siepmann J. 3D printed PLGA implants: APF DDM vs. FDM // Journal of Controlled Release, 2023. N 353. Pp. 864–874. DOI: 10.1016/j.jconrel.2022.11.052

10. Kennedy S.W., Choudhury N.R., Parthasarathy R. 3D printing soft tissue scaffolds using Poly(caprolactone) // Bioprinting, 2023. N 30 (2). DOI: 10.1016/j.bprint.2023.e00259.

11. Moradi M., Beygi R., Yusof M.N., Ali Amiri A., da Silva L.F.M., Sharif S. 3D Printing of Acrylonitrile Butadiene Styrene by Fused Deposition Modeling: Artifi cial Neural Network and Response Surface Method Analyses // Journal of Materials Engineering and Performance, 2023. N32. Pp. 2016–2028. DOI: 10.1007/s11665-022-07250-0.

12. Zhou L., Miller J., Vezza J., Mayster M., Raffay M., Justice Q., Al Tamimi Z., Hansotte G., Sunkara L.D., Bernat J. Additive Manufacturing : A Comprehensive Review // Sensors, 2024. N 24, P. 2668. DOI: 10/3390/s24092668.

13. Koller M., Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters // Bioengineering, 2022. N9. P. 74. DOI: 10.3390/bioengineering9020074.

14. Laycock B., Halley P., Pratt S., Werker A., Lant P. The Chemomechanical Properties of Microbial Polyhydroxyalkanoates // Progress in Polymer Science, 2013. N 38, Pp. 536–583. DOI: 10.1016/j.progpolymsci.2012.06.003.

15. Volova T.G., Shishatskaya E.I., Sinskey A.J. Degradable Polymers: Production, Properties, applications – Nova Science Publishers, Inc., 2013.380 p.

16. Mitra R., Xu T., Chen G., Xiang H., Han J. An Updated Overview on the Regulatory Circuits of Polyhydroxyalkanoates Synthesis // Microbial Biotechnology, 2022. N 15. Pp. 1446–1470. DOI: 10.1111/1751-7915.13915.

17. Choi S.Y., Lee Y., Yu H.E., Cho I.J., Kang M., Lee S.Y. Sustainable production and degradation of plastics using microbes // Nature Microbiology, 2023. N 8. Pp. 2253–2276. DOI: 10.1038/s41564-023-01529-1.

18. Asare E., Gregory D. A., Fricker A., Marcello E., Paxinou A., Taylor C.S., Haycock J.W., Roy I. Polyhydroxyalkanoates, Their Processing and Biomedical applications. In The Handbook of Polyhydroxyalkanoates – CRC Press: Boca Raton, FL, USA, 2020, Pp. 255–284. DOI: 10.1016/j.molmed.2022.01.007.

19. Rydz J., Sikorska W., Musioł M., Janeczek H., Włodarczyk J., Misiurska-Marczak M., Łęczycka J., Kowalczuk M. 3D-Printed Polyester-Based Prototypes for Cosmetic applications — Future Directions at the Forensic Engineering of Advanced Polymeric Materials // Materials 2019. N12. P. 994. DOI: 10.3390/ma120609994.

20. Интернет–магазин CollorFabb: официальный сайт. 2013. URL: https://colorfabb.com/catalogsearch/result/?q=pha (дата обращения: 30. 05. 2025).

21. Gregory D.A., Fricker A.T.R., Mitrev P., Ray M., Asare E., Sim D., Larpnimitchai S., Zhang Z., Ma J., Tetali S.S.V. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices // Journal of Functional Biomaterials, 2023. N 14. P. 40. DOI: 10.3390/jfb14010040.

22. Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of Scaffolds Prepared by Fused Deposition Modeling of Poly(Hydroxyalkanoates) // International Journal of Biological Macromolecules, 2020. N 161. Pp. 364–376. DOI: 10.1016/j.ijbiomac.2020.06.022.

23. Wu C.S., Liao H.T. Interface Design of Environmentally Friendly Carbon Nanotube-Filled Polyester Composites: Fabrication, Characterisation, Functionality and application // Express Polymer Letter. 2017. N 11. Pp. 187–198. DOI: 10.3144/expresspolymlett.2017.20.

24. Wu C.-S., Liao H.-T., Cai Y.-X. Characterisation, Biodegradability and application of Palm Fibre-Reinforced Polyhydroxyalkanoate Composites // Polymer Degradation Stability, 2017. N 140. Pp. 55–63. DOI: 10.1016/j.polymdegradstab.2017.04.016.

25. Duan B., Cheung W.L., Wang M. Optimized Fabrication of Ca–P/PHBV Nanocomposite Scaffolds via Selective Laser Sintering for Bone Tissue Engineering // Biofabrication, 2011. N 3. P. 015001. DOI: 10.1088/1758-5082/3/1/01500124.

26. Puppi D., Pirosa A., Morelli A., Chiellini F. Design, Fabrication and Characterization of Tailored Poly[(R)-3-Hydroxybutyrate-Co-(R)-3-Hydroxyexanoate] Scaff olds by Computer-Aided Wet-Spinning // Rapid Prototyping Journal. 2018. N 24. Pp. 1–8. DOI: 10.1108/RPJ-03-2016-0037.

27. Патент РФ No. 2439143 Российская федерация МПК C12N 1/20 (2006.01) C12P 7/62 (2006.01). Штамм бактерий ВКПМ В-10646 – продуцент полигидроксиалканоатов и способ их получения: № 2010146514/10: заявл. 15. 11. 2010: опубл. 10. 01. 2012 / Волова Т.Г., Шишацкая Е. И.: заявитель Волова Т.Г., Шишацкая Е.И. – 13 с.

28. Volova T., Kiselev E., Vinogradova O., Nikolaeva E., Chistyakov A., Sukovatiy A., Shishatskaya E. A Glucose-Utilizing Strain, Cupriavidus Euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs // PLoS ONE. 2014. N 9. DOI: 10.1371/journal.pone.0087551.

29. Braunegg G., Sonnleitner B., Lafferty R. M. A Rapid Gas Chromatographic Method for the Determination of Poly-β-Hydroxybutyric Acid in Microbial Biomass // European journal of applied microbiology and biotechnology, 1978. N 6. Pp. 29–37. DOI: 10.1007/bf00500854/

30. Патент РФ No. 2769197 Российская федерация МПК B29C 48/88 (2019.01). Устройство завихрителя потоков воздуха для охлаждения экструдированных масс.: № 2020118611: заявл. 27. 05. 2020: опубл.: 29. 03. 2022 / Кистерский K.А : заявитель ФГАОУ ВО СФУ. – 7 с.

31. Shishatskaya E.I., Demidenko A.V., Sukovatyi A.G., Dudaev A.E., Mylnikov A.V., Kisterskiy K.A., Volova T.G. 3D printing of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] biodegradable scaffolds: properties, in vitro and in vivo evaluation // International Journal of Molecular Sciences. 2023. N 24(16). Pp. 12969–1289. DOI: 10.3390/ijms241612969.


Review

For citations:


Kiselev E.G., Demidenko A.V., Volova T.G. Change in molecular and thermal characteristics of thermoplastic biodegradable copolymer in FDM process. Plasticheskie massy. 2025;(3):49-52. (In Russ.) https://doi.org/10.35164/0554-2901-2025-03-49-52

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)