Preview

Пластические массы

Расширенный поиск

Применение катионных флокулянтов ионенового типа для очистки воды от красителей (обзор)

https://doi.org/10.35164/0554-2901-2025-03-37-41

Аннотация

   В данном обзоре обобщены литературные данные по применению водорастворимых аммонийсодержащих ионеновых флокулянтов для очистки воды от красителей (в том числе в композициях с коагулянтами). Рассмотрено влияние на эффективность очистки типа красителей, молекулярной массы ионенов, их концентрации, рН растворов и других
параметров.

Об авторах

О. А. Казанцев
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



И. Р. Арифуллин
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



С. А. Ожогин
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



М. В. Савинова
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



Е. Б. Спицына
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



Я. В. Долинов
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



К. В. Ширшин
Нижегородский государственный технический университет им. Р. Е. Алексеева
Россия

Нижний Новгород



Список литературы

1. Seow T.W., Seow C., Lim K., Norb M. et al. Review on Wastewater Treatment Technologies // Int. J. Appl. Environ. 2016. Vol. 11, N 1. P. 111–126. ISSN 2278 – 0181.

2. Nishat A., Yusuf M., Qadir A.. Wastewater treatment: A short assessment on available techniques // Alex. Eng. J. 2023. Vol. 76. P. 505–516. DOI: 10.1016/j.aej.2023.06.054.

3. Moub A. Polymer based flocculants: Review of water purification applications // JWPE2022. Vol. 48. P. 102938. DOI: 10.1016/j.jwpe.2022.102938.

4. Abujazar M., Karaagac S., Amr S., Alazaiza M., Bashir M.. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater : A review // J. Cleaner Product. 2022. Vol. 345. P. 131133. DOI: 10.1016/j.jclepro.2022.131133.

5. Bharti S.A. Critical Review on Flocculants and Flocculation // Non-Metallic Material Science. 2019. Vol. 1, N 1. P. 11–21. DOI: 10.1016/j.jclepro.2022.131133.

6. Klun T.P. Wendling L.A., Bogart J.W.C., Robbins A.F. Structure-property relationships of ionene polymers // J. Polym. Sci. Part A: Polym. Chem. 1987. Vol. 25. P. 87–109. DOI: 10.1002/pen.20069.

7. Williams S.R., Long T.E. Recent advances in the synthesis and structure–property relationships of ammonium ionenes // Prog. Polym. Sci. 2009. Vol. 34, N 8. P. 762–782. DOI: 10.1016/j.progpolymsci.2009.04.004.

8. Lee J.S. Advances in the molecular design of ionenes for a diverse range of applications // Mol. Syst. Des. Eng. 2021. Vol. 6. P. 334–354. DOI: 10.1039/D1ME00007A.

9. Bara J.E., Harra K.O. Recent Advances in the Design of Ionenes: Toward Convergence with High-Performance Polymers // Macromol. Chem. Phys. 2019. Vol. 220. P. 1900078. DOI: 10.1002/macp.201900078.

10. Zhu Y. Liu L., Mustafi M., Rank L.A. et al. Local rigidification and possible coacervation of the Escherichia coli DNA by cationic nylon-3 polymers // Biophys. J. 2021. Vol. 120. P. 5243–5254. DOI: 10.1016/j.bpj.2021.10.037.

11. Zheng А., Xu X., Xiao H., et al. Preparation of antistatic and antimicrobial polyethylene by incorporating of comblike ionenes // J. Mater. Sci. 2012. Vol. 47. Р. 7201–7209. DOI: 10.1007/s10853-012-6666-x.

12. Mahdieh A., Motasadizadeh H., Maghsoudian S., et al. Novel polyurethane-based ionene nanoparticles electrostatically stabilized with hyaluronic acid for effective gene therapy // Colloids and Surfaces B: Biointerfaces. 2024. Vol. 236. P. 113802. DOI: 10.1016/j.colsurfb.2024.113802.

13. Mittenthal M.S., Flowers B.S., Bara J.E. et al. Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes // Ind. Eng. Chem. Res. 2017. Vol. 56, N 17. P. 5055–5069. DOI: 10.1021/acs.iecr.7b00462.

14. Abate A., Petrozza A., Roiati V., Guarnera S.. A polyfluoroalkyl imidazolium ionic liquid as iodide ion source in dye sensitized solar cells // Org. Electron. 2012. Vol. 13, N11. P. 2474–2478. DOI: 10.1016/j.orgel.2012.07.009.

15. Sun S., Yang Z., Xuang X. et al. Coagulation performance and membrane fouling of polyferric chloride/epichlorohydrin–dimethylamine in coagulation/ultrafi ltration combined process // Desalination. 2015. Vol. 357. P. 163–170. DOI: 10.1016/j.desal.2014.11.031.

16. Sun S., Bu F., Huang X. et al. Effects of epichlorohydrin–dimethyl-amine on coagulation and membrane performance of ferric chloride in coagulation–ultrafiltration hybrid process // Chem. Eng. J. 2015. Vol. 280. P. 634–642. DOI: 10.1016/j.cej.2015.06.011.

17. Bortel E, Styslo M. Infl uence of Different Water Soluble Polymers and Poly(Ethy1ene Oxide). Ionene Complexes on Sedimentation of Suspended Particles and Filter Cake Resistance // Die Ange-wandte Makromoiekuiare Chemie. 1986. Vol. 138, N 1. P. 61–73. DOI: 10.1002/apmc.1986.051380105.

18. Kazantsev O.A., Shirshin K.V., Baruta D.S., et al. The Influence of Association of Reagents on the Polycondensation of Epichlorhydrin and 1,3-Bis(dimethylamino)propanol-2 in Water // Polym. Sci. Ser. D. 2022. Vol. 15. P. 581–585. DOI: 10.1134/S1995421222040323.

19. Годжаева А.Р. Подбор оптимальных условий синтеза полиэлектролита из эпихлоргидрина и диметиламина // Нефтепереработка и нефтехимия. 2013. N 12. С. 19–21. EDN: RUPIRH.

20. Даминев Р.Р., Асфандияров Р.Н., Фаткуллин Р.Н., Асфандиярова Л.Р., Юнусова Г.В. Синтетические полиэлектролиты отечественного производства – области применения, перспективы использования // Нефтегазовое дело. 2015. № 6. С. 431–442. EDN: VKHFBZ.

21. Крючков Н.В., Орлов Ю.Н., Левнова С.В. Исследование процесса выделения эмульсионных бутадиен-(α-метил)стирольных каучуков с применением катионного полиэлектролита поли-N,N-диметил-N-2 гидроксипропил-аммонийхлорида // Журнал прикладной химии. 2011. Т. 84, № 11. С. 1893–1897. EDN: QFHAHM.

22. Bolto B., Xi Z. The Use of Polymers in the Flotation Treatment of Wastewater // Processes. 2019. Vol. 7. P. 374. DOI: 10.3390/pr7060374.

23. Patent US-11142590-B2, МКП C08L7/02, C08C1/02, C08C1/07, C08C2/06, Solidification of a natural rubber latex by polyquaternary polymers. App. 11. 08. 2017; published 12. 10. 2021 / Gagliardi G. (ITALY), Regattieri G. (ITALY), Mazzotti E. (Italy).

24. Wang Y., Gao B., Yue Q. et al. Flocculation performance of epichlorohydrin-dimethylamine polyamine in treating dyeing wastewater // J. Environ. Manag. 2009. Vol. 91, N 2. P. 423–431. DOI: 10.1016/j.jenvman.2009.09.012.

25. Пат. 2266301 РФ (2005). МПК C08G 65/26. Способ получения водорастворимого сополимера / Шварева Г.Н., Казанцев О.А., Сухотин А.Е. и др.; заявл. 29. 06. 2004; опубл. 20. 12. 2005.

26. Jiang X., Ding W., Li H., et al. Facile synthesis of Poly(epichlorohydrin-diethylenetriamine) hydrogel for highly selective diclofenac sodium removal // Sep. Purif. Technol. 2022. Vol. 283. P. 120215. DOI: 10.1016/j.seppur.2021.120215.

27. Li D., Bai N., Dong H., Mao D. One-Step Synthesis of Cationic Hydrogel for Efficient Dye Adsorption and Its Second Use for Emulsified Oil Separation // ACS Sustainable Chem. Eng. 2017. Vol. 5, N 6. P. 5598–5607. DOI: 10.1021/acsomega.0c00103.

28. Zueva S.B. Macolino P., Veglio F. Polyamine flocculation applied to household batteries recycling // J. Mater. Cycles. Waste. Manag. 2015. Vol. 17. P. 504–512. DOI: 10.1007/s10163-014-0265-7.

29. He Q., Deng C., Xu Y., et al. Optimization of and mechanism for the coagulation–flocculation of oil-field wastewater from polymer flooding // Desalin. Water Treat. 2016. Vol. 57, N 50. P. 23709–23718.

30. Gupta S. K., Nayunigari M. K., Ansari F. A., et al. Synthesis and Performance Evaluation of a New Polymeric Composite for the Treatment of Textile Wastewater // Ind. Eng. Chem. Res. 2016. Vol. 55, N 1. P. 13−20. doi: 10.1021/acs.iecr.5b03714.

31. Yue Q.Y., Gao B.Y., Wang Y., et al. Synthesis of polyamine flocculants and their potential use in treating dye wastewater // J. Hazard. Mater. 2008. Vol. 152, N 1. P. 221–227. DOI: 10.1016/j.jhazmat.2007.06.089.

32. Fang L., Zhang X., Ma J., et al. Eco-friendly cationic modification of cotton fabrics for improving utilization of reactive dyes // RSC Adv. 2015. Vol. 5. P. 45654–45661. DOI: 10.1016/j.carbpol.2012.08.049.

33. Kang Q., Gao B., Yue Q., Zhou W., Shen D.. Residual color profiles of reactive dyes mixture during a chemical flocculation process // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007. Vol. 299. P. 45–53. DOI: 10.1016/j.colsurfa.2006.11.021.

34. Niu Y., Ding Z., Chen B., Chen Y.. The Application of Epichlorohydrin-dimethylamine Polymer Flocculant for Tannery Wastewater Treatment // Adv. Mat. Research. 2013. Vol. 610–613. P. 480–484. DOI: 10.4028/www.scientific.net/AMR.610-613.480.

35. Wang Y.F., Gao B.Y., Yue Q.Y., et al. Removal of acid and direct dye by epichlorohydrin–dimethylamine: Flocculation performance and floc aggregation properties // Bioresour. Technol. 2012. Vol. 113. P. 265–271. DOI: 10.1016/j.jenvman.2009.09.012.

36. Yang Z. Liu X., Gao B., et al. Flocculation kinetics and floc characteristics of dye wastewater by polyferric chloride–poly-epichlorohydrin–dimethylamine composite flocculant // Sep. Purif. Technol. 2013. Vol. 118. P. 583–590.

37. Yang Z., Gao B., Wang Y., et al. Synthesis and application of polyferric chloride–poly(epichlorohydrin–dimethylamine) composites using different crosslinkers // Chem. Eng. J. 2012. Vol. 213. P. 8–15. DOI: 10.1016/j.cej.2012.09.120.

38. Chen T., Gao B., Yue Q. Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride−polyamine dual-coagulant in synthetic dyeing wastewater treatment // Colloids Surf., A. 2010. Vol. 355, N 1–3. P. 121−129. DOI: 10.1016/j.cej.2009.02.012.

39. Yang Z., Lu X., Gao B., et al. Fabrication and characterization of poly(ferric chloride)-polyamine flocculant and its application to the decolorization of reactive dyes // J. Mater. Sci. 2014. Vol. 49. P. 4962–4972. DOI:10.1007/s10853-014-8197-0.

40. Gao B., Liu B., Chen T., Yue Q. Effect of aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride–polyamine composite coagulant for synthetic dying wastewater treatment // J. Hazard. Mater. 2011. Vol. 187. P. 413–420. DOI: 10.1016/j.jhazmat.2011.01.044.

41. Wang Y., Gao B., Yue Q.. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater // J. Environ. Sci. 2011. Vol. 23, N 10. P. 1626–1633. DOI: 10.1016/S1001-0742(10)60624-9.

42. Choi J., Shin W., Lee S., et al. Application of synthetic polyamine flocculants for dye wastewater treatment // Sep. Sci. Technol. 2001. Vol. 36, N 13. P. 2945–2958. DOI: 10.1081/SS-10010763843.

43. Joo D. J., Shin D. J. W. S., Kim Y. H., et al. Effect of Polyamine Flocculant Types on Dye Wastewater Treatment // Sep. Sci. Technol. 2003. Vol. 38, N3. P. 661–678. DOI: 10.1081/SS-120016657.


Рецензия

Для цитирования:


Казанцев О.А., Арифуллин И.Р., Ожогин С.А., Савинова М.В., Спицына Е.Б., Долинов Я.В., Ширшин К.В. Применение катионных флокулянтов ионенового типа для очистки воды от красителей (обзор). Пластические массы. 2025;(3):37-41. https://doi.org/10.35164/0554-2901-2025-03-37-41

For citation:


Kazantsev O.A., Arifullin I.R., Ozhogin S.A., Savinova M.V., Spitsyna E.B., Dolinov Ya.V., Shirshin K.V. Application of cationic ionic flocculants of ionene type for water purification from dyes (review). Plasticheskie massy. 2025;(3):37-41. (In Russ.) https://doi.org/10.35164/0554-2901-2025-03-37-41

Просмотров: 50


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0554-2901 (Print)