Polymer nanocomposites with metallized carbon nanotubes: synthesis, structure and properties
https://doi.org/10.35164/0554-2901-2025-01-38-41
Abstract
The effect of metallized carbon multilayer nanotubes (MWСNTs) on the thermal and electrophysical properties and structure of elastomer was studied. Ultrahigh frequency (UHF) synthesis technology was used to obtain metallized MWCNTs. The composite was obtained by mixing the compound and MWCNTs using a top-driven stirrer. The electro- and thermophysical properties of the composites obtained on the basis of 3 different types of elastomers - Silagerm 8020; 8030 and 8040 – were investigated.
It is noted that the Silagerm 8040 based composite has better performance, but there is a significant loss of elasticity, which is unacceptable in many process applications.
It is observed that the packing factor F for Silagerm 8040 and Silagerm 8030 has a close value, but its critical conductivity value is 2.5 and for Silagerm 8030 it is 2.3. At lower values of thermal and electrical conductivity, Silagerm 8020 retains a high level of flexibility.
The result of the work was the creation of a functional composite that has a self-regulating temperature effect when exposed to electrical voltage. Applications of functional composite with temperature self-regulation effect include electric heating technologies, where elastic materials resistant to corrosion and external temperature and mechanical effects are required.
About the Authors
Alexandr V. ShchegolkovRussian Federation
Tambov.
Alexey V. Shchegolkov
Russian Federation
Moscow.
M. А. Chumak
Russian Federation
St. Petersburg.
V. V. Kaminsky
Russian Federation
St. Petersburg
References
1. Oladele I.O., Omotosho T.F., Adediran A.A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. // International Journal of Polymer Science. 2020. P. 1–12. doi: 10.1155/2020/8834518.
2. Mazitova A.K., Zaripov I.I., Aminova G.K., Ovod M.V., Suntsova N.L. Fillers for polymer composite materials // Nanotechnologies in Construction. 2022. V. 14, N4. P. 294–299. https://doi.org/10.15828/2075-8545-2022-14-4-294-299.
3. Yangkai Liu, Linlin Wang, Yanju Liu, Fenghua Zhang, Jinsong Leng. Recent progress in shape memory polymer composites: Driving modes, forming technologies, and applications // Composites Communications. 2024. V. 51. P. 102062. https://doi.org/10.1016/j.coco.2024.102062.
4. Stavros X. Drakopoulos, Jiaen Wu, Shawn M. Maguire, Sneha Srinivasan, Katelyn Randazzo, Emily C. Davidson, Rodney D. Priestley, Polymer nanocomposites: Interfacial properties and capacitive energy storage, Progress in Polymer Science. 2024. V. 156. P. 101870. https://doi.org/10.1016/j.progpolymsci.2024.101870.
5. Kwon Y.-J., Park J.-B., Jeon Y.-P., Hong J.-Y., Park H.-S., Lee, J.-U.A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties. // Polymers. 2021. V. 13. P. 1312. https://doi.org/10.3390/polym13081312.
6. Gaur M., Misra C., Yadav A. B., Swaroop S., et al. Biomedical Applications of сarbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers and graphene // Materials (Basel). 2021. V. 14 (20). P. 5978. https://doi.org/10.3390/ma14205978.
7. Yung K.P., Wei J., Wang Z.F. and B.K. Tay. Carbon Nanotubes (CNTs) as conductive filler for polymer composite. // 2nd IEEE International Nanoelectronics Conference. Shanghai. China. 2008. Р. 1198–1201. doi: 10.1109/INEC.2008.4585694.
8. Lehman John H., Terrones Mauricio, Mansfi eld Elisabeth, et al. Evaluating the characteristics of multiwall carbon nanotubes // Carbon. 2011. V. 49. Issue 8.2. P. 2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028.
9. Arjmand M., Mirkhani S.A., Pötschke P. et al. Impact of synthesis temperature on structure of carbon nanotubes and morphological and electrical characterization of their polymeric nanocomposites. / AIP Conference Proceedings 1914(1). Lyon, France. doi: 10.1063/1.5016698.
10. Ishaq A. Mohammed, Mercy T. Bankole, Ambali S. Abdulkareem, et al. Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment // South African Journal of Chemical Engineering. 2017. V. 24. P. 17–42. https://doi.org/10.1016/sajce.2017.06.001.
11. Sari A.H., Khazali A., Parhizgar S. S. Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution. // Int Nano. 2018. Lett 8. P. 19–23. https://doi.org/10.1007/s40089-018-0227-5.
12. Das R., Shahnavaz Z., Ali M.E. et al. Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis? // Nanoscale Research Letters 11. 2016. P. 510. https://doi.org/10.1186/s11671-016-1730-0.
13. Zhu H.W., Li X.S., Jiang B, Xu C.L, Zhu Y.F., Wu D.H, Chen X.H. Formation of carbon nanotubes in water by the electric-arc technique. // Chemical Physics. Letter. 2002. V. 366. Issues 5/6. P. 664–669. https://doi.org/10.1016/S0009-2614(02)01648-2.
14. Borisenko D.N., Kolesnikov N.N., Kulakov M.P., Kveder V. (2002). Growth of carbon nanotubes (CNTs) in electric-arc discharge in argon. // International Journal of Nanoscience. 2001. V. 3, N 4, PP. 235–246. doi: 10.1142/s0219581x02000310.
15. Щегольков А.В, Щегольков А.В., Чумак М.А. Каминский В.В. Электропроводящие полимерные композиты на основе эластомеров, модифицированных углеродными нанотрубками с металлизированной поверхностью. // Каучук и резина. 2024. Т. 83, №4. С. 200-205.
16. Etman, M.A., Bedewy, M.K., Khalil, H.A., Azzam, B.S., & Ali, S. H. R. (2009). Carbon nanotubes reinforced polymer matrix nanocomposites. International Journal of Nanoparticles, 2(1/2/3/4/5/6). Р. 339. doi: 10.1504/ijnp.2009.028768.
17. Shchegolkov A.V. Comparative analysis of thermal eff ects in elastomers modifi ed with MWCNTs at constant electric voltage / A.V. Shchegolkov // Vector of Science of Togliatti State University. 2021. №1. S. 63–73.
18. Jiang, Y., Zhang, Y., Zhou, J. et al. Network structural carbon nanotubes covalently linked graphene composite film for flexible electro-thermal heater with enhanced performance. J Mater Sci: Mater Electron 34, 1335 (2023). https://doi.org/10.1007/s10854-02310757-4.
19. Mamunya Y.P., Davydenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 2002, vol. 38, N9, Р. 1887–1897. https://doi.org/10.1016/s0014-3057(02)00064-2.
Review
For citations:
Shchegolkov A.V., Shchegolkov A.V., Chumak M.А., Kaminsky V.V. Polymer nanocomposites with metallized carbon nanotubes: synthesis, structure and properties. Plasticheskie massy. 2025;(1):38-41. (In Russ.) https://doi.org/10.35164/0554-2901-2025-01-38-41