Natural magnetic functional filler for polymers
https://doi.org/10.35164/0554-2901-2024-06-46-49
Abstract
Natural magnetite obtained from serpentinite from Kabardino-Balkar Republic deposit, which is a promising modifier of polymeric materials used in the medical field, has been studied. Methods of magnetite grinding were studied, X-ray structure and X-ray phase analyses of serpentinite and magnetite were carried out. It has been established that the time of grinding the mineral has virtually no effect on its structure. It has been shown that the grinding method (dry or wet) affects the particle size and magnetic properties of magnetite. The study of natural magnetite extracted from serpentinite deposits of the Kabardino-Balkar Republic, which is a promising disperse filler for polymer composite materials, has been carried out.
About the Authors
A. S. VindizhevaRussian Federation
Nalchik, KBR
A. L. Slonov
Russian Federation
Nalchik, KBR
P. A. Ershov
Russian Federation
Kaliningrad
V. D. Salnikov
Russian Federation
Kaliningrad
S. Yu. Khashirova
Russian Federation
Nalchik, KBR
K. R. Kozhemova
Russian Federation
Nalchik, KBR
I. D. Simonov-Emelyanov
Russian Federation
Moscow
References
1. Wang Y., Ahmadi Moghaddam H., Palacios Moreno J., Mertini P. Magnetically filled polymer composites – morphological characterization, experimental and stochastic analysis of mechanical properties by finite element method // Polymers. 2023. V. 15. PP. 2897–2907. https://doi.org/10.3390/polym15132897.
2. Kebede K. Kefeni, Titus A.M. Msagati, Thabo TI. Nkambule, Bhekie B. Mamba. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity // Materials Science and Engineering: C. 2020. V. 107. PP.110–314. DOI: 10.1016/j.msec.2019.110314.
3. Dionne G. F. Magnetic oxides. New York: Springer. 2009. 15 р. DOI: 10.1007/978-1-4419-0054-8.
4. Robertson E.C. Thermal properties of rocks. United States Department of the interior. Geological Survey.1988. 107 p. DOI:10.3133/OFR88441.
5. Chunpeng H. Y. L., Yixin H. Heating rate of minerals and compounds in microwave field //Transaction of NFsoc. 1996. V. 6, N. 1. PP. 35–40.
6. Xanthos M. Functional fillers for plastics. John Wiley and Sons. 2010. 419 p.
7. Ehrmann G., Blachowicz T., Ehrmann A. Magnetic 3D-printed composites—production and applications // Polymers. 2022. V. 14, N. 18. PP. 38–95. https://doi.org/10.3390/polym14183895.
8. Mungale K. Compression molding of anisotropic NdFeB bonded magnets in a polycarbonate matrix //Materialia. 2021. V. 19. PP. 101–167. DOI:10.2139/ssrn.3844700.
9. Morrish Allan H. The physical principles of magnetism, 2001. 700 p. DOI:10.2139/ssrn.3844700.
10. Lenaz D., Skogby H., Nestola F., Princivalle F. OH incorporation in nearly pure MgAl2O4 natural and synthetic spinels // Geochimica et Cosmochimica Acta. 2008. V. 72. PР. 475–479. DOI: 10.1016/j.gca.2007.10.020.
11. Shateraba di Z., Nabiyouni G., Goya G.F. The effect of the magnetically dead layer on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles // Appl. Phys. A. 2022. V. 128. PP. 631–641.
12. Grössinger R. A critical examination of the law of approach to saturation. I. Fit procedure, 1981. 500 p. DOI:10.1002/PSSA.2210660231.
13. David J. Dunlop. Hysteresis properties of magnetite and their dependence on particle size: A test of pseudo-single-domain remanence models // Journal of Geophysical Research. 1986. V. 91. PР. 9569–9584. DOI: 10.1029/JB091iB09p09569.
14. Néel L. Some theoretical aspects of rock-magnetism // Advances in Physics. 1955. V. 4. PP. 191–243. https://doi.org/10.1080/00018735500101204.
Review
For citations:
Vindizheva A.S., Slonov A.L., Ershov P.A., Salnikov V.D., Khashirova S.Yu., Kozhemova K.R., Simonov-Emelyanov I.D. Natural magnetic functional filler for polymers. Plasticheskie massy. 2024;(6):46-49. (In Russ.) https://doi.org/10.35164/0554-2901-2024-06-46-49