Метод расчета эффективной диэлектрической проницаемости материала с периодически распределенными неоднородностями
https://doi.org/10.35164/0554-2901-2024-06-33-35
Аннотация
В статье предложен метод расчёта эффективной диэлектрической проницаемости материала с периодически распределёнными неоднородностями. Метод основан на расчете эквивалентной электрической цепи элементарной ячейки материала. Для проведения экспериментальных исследований методом трехмерной DLP печати были изготовлены образцы материала с цилиндрическими воздушными полостями различного диаметра. Сравнение результатов расчета и измерения эффективной диэлектрической проницаемости показало малую расходимость (не более 5%).
Ключевые слова
Об авторах
Р. А. ПлатоновРоссия
А. Г. Алтынников
Россия
А. Е. Комлев
Россия
А. А. Цымбалюк
Россия
Д. А. Кудрявцева
Россия
Список литературы
1. Wang Y. et al. Microwave-frequency experiment validation of a novel magneto-photonic crystals circulator // IEEE Photonics Journal. 2017. V. 10(3). P. 1–6. DOI:10.1109/JPHOT.2017.2783341.
2. Khatami S.A. et al. Photonic crystal 180 ring-shaped hybrid: From microwave to optics // IEEE Photonics Technology Letters. 2021. V. 33(21). P. 1165–1168. DOI:10.1109/LPT.2021.3109633.
3. Li Q.L. et al. Microwave lens using periodic dielectric sheets for antenna-gain enhancement // IEEE Transactions on Antennas and Propagation. 2017. V. 65(4). P. 2068–2073. DOI:10.1109/TAP.2017.2670441.
4. Paul S., Akhtar M. J. Novel metasurface lens-based RF sensor structure for SAR microwave imaging of layered media // IEEE Sensors Journal. 2021. 21(16). Р. 17827–17837. DOI 10.1109/JSEN.2021.3084614.
5. Gaufillet F., Akmansoy E. Graded photonic crystals for Luneburg lens // IEEE Photonics Journal. 2016. V. 8 (1). P. 1–11. DOI: 10.1109/JPHOT.2016.2521261.
6. Colella R. et al. Customizing 3D-printing for electromagnetics to design enhanced RFID antennas // IEEE Journal of Radio Frequency Identification. 2020. V. 4(4). P. 452–460. DOI:10.1109/JRFID.2020.3001043.
7. Rogers Corporation [Electronic resource]: Radix 2.8Dk Printable Dielectric Data Sheet / Rogers Corporation, 2024. URL: https://www.rogerscorp.com/-/media/project/rogerscorp/documents/advancedelectronics-solutions/english/data-sheets/radix-printable-dielectricdata-sheet.pdf (circulation date: 30.05.2024).
8. Paolella A.C. et al. Broadband millimeter wave characterization of 3-D printed materials // 2018. IEEE/MTT-S International Microwave Symposium-IMS. – IEEE. 2018. P. 1565–1568. DOI:10.1109/MWSYM.2018.8439634.
9. Rosker E.S. et al. Printable materials for the realization of high performance RF components: Challenges and opportunities // International Journal of Antennas and Propagation. 2018(3):1-19. DOI:10.1155/2018/9359528.
10. Muldavin J. B., Rebeiz G. M. Millimeter-wave tapered-slot antennas on synthesized low permittivity substrates // IEEE Transactions on Antennas and Propagation. 1999. V. 47. P. 1276–1280. DOI:10.1109/8.791943.
11. Koledintseva M.Y. et al. Representation of permittivity for multiphase dielectric mixtures in FDTD modeling // 2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. N 04CH37559). IEEE/ 2004. V. 1. P. 309–314. DOI:10.1109/ISEMC.2004.1350047.
12. K. Lichtenecker. Dielectric constant of natural and synthetic mixtures. Zeitschrift fur Physik. 1926. P. 115–158.
13. Jayasundere N., Smith B. V. Dielectric constant for binary piezoelectric 0–3 composites // Journal of applied physics. 1993. V. 73(5). P. 2462–2466. DOI:10.1063/1.354057.
14. Prasad A., Prasad K. Effective permittivity of random composite media: a comparative study // Physica B: Condensed Matter. 2007. V. 396(1–2). P. 132–137. DOI: 10.1016/j.physb.2007.03.025.
15. Sareni B. et al. Complex effective permittivity of a lossy composite material // Journal of Applied Physics. 1996. V. 80(8). P. 4560–4565. DOI:10.1109/CEIDP.1996.564661.
16. Sareni B. et al. Effective dielectric constant of periodic composite materials // Journal of Applied Physics. 1996. V. 80(3). P. 1688–1696. https://doi.org/10.1063/1.362969.
17. Koledintseva M.Y. et al. Prediction of effective permittivity of diphasic dielectrics as a function of frequency // IEEE Transactions on Dielectrics and Electrical Insulation. 2009. V. 16(3). P. 793–808. DOI:10.1109/TDEI.2009.5128520.
18. Cheng Y. et al. Study on the dielectric property of composite materials based on electric network // International Journal of Applied Electromagnetics and Mechanics. 2010. V. 33(1–2). P. 439–445. DOI:10.3233/JAE-2010-1143.
19. Gagarin A. et al. An Adaptation of the Split-Cylinder Resonator Method for Measuring the Microwave Properties of Thin Ferroelectric Films in a «Thin Film-Substrate» Structure // Sensors. 2024. V. 24(3). P. 755. DOI:10.3390/s24030755.
Рецензия
Для цитирования:
Платонов Р.А., Алтынников А.Г., Комлев А.Е., Цымбалюк А.А., Кудрявцева Д.А. Метод расчета эффективной диэлектрической проницаемости материала с периодически распределенными неоднородностями. Пластические массы. 2024;(6):33-35. https://doi.org/10.35164/0554-2901-2024-06-33-35
For citation:
Platonov R.A., Altynnikov A.G., Komlev A.E., Tsymbalyuk A.A., Kudriavtseva D.A. Method for calculating the effective dielectric constant of a material with periodically distributed inhomogeneities. Plasticheskie massy. 2024;(6):33-35. (In Russ.) https://doi.org/10.35164/0554-2901-2024-06-33-35