УДК: 541.64:547(538.141+1'128)

Синтез полимерных суспензий в присутствии кремнийорганических ПАВ различной природы

Synthesis of polymer suspensions in the presence of organosilicon surfactants of various nature

 $U.A.\ \Gamma P U U K O B A^1,\ C.A.\ \Gamma V C E B^2,\ B.U.\ \Gamma O M 3 K K^1,\ U.B.\ C K O П U H U E B^3,\ E.B.\ A H O X U H^1,\ M.\ X A Д Д A Ж^1,\ M.C.\ U A P B K O B A^4,\ C.M.\ Л E B A Y E B^5$

I.A. GRITSKOVA¹, S.A. GUSEV², V.I. GOMZYAK¹, I.V. SKOPINTSEV³, E.V. ANOKHIN¹, M. KHADDAZH¹, M.S. TSARKOVA⁴, S.M. LEVACHEV⁵

1 МИРЭА – Российский технологический университет, Москва, Россия

¹ MIREA – Russian Technological University, Moscow, Russia

vgomzyak@gmail.com

В работе исследованы коллоидно-химические свойства кремнийорганических поверхностно-активных веществ с различной растворимостью в воде. Изучено их поведение в модельных системах – ленгмюровских пленках на границе раздела вода-воздух. Полученные результаты показали, что высокая устойчивость полимерных суспензий наблюдается только в присутствии нерастворимых в воде кремнийорганических ПАВ.

Ключевые слова: гетерофазная полимеризация, полимерные суспензии, кремнийорганические ПАВ, поверхностноактивные вещества

The colloid-chemical properties of organosilicon surfactants with different solubility in water were studied. The behavior of organosilicon surfactants of various structures in model systems - Langmuir films at the water-air interface has been studied. The results obtained showed that high stability of polymer suspensions is observed only in the presence of insoluble in water organosilicon surfactants.

Keywords: heterophase polymerization, polymer suspensions, organosilicon surfactants, surfactants

DOI: 10.35164/0554-2901-2022-5-6-20-24

Проблема синтеза полимерных суспензий с частицами разного диаметра и узким распределением по размерам весьма актуальна, поскольку область их применения чрезвычайно широка [1–6].

Представлялось важным оценить влияние растворимости в воде кремнийорганических ПАВ на свойства полимерных суспензий для того, чтобы выяснить, возможно ли в их присутствии получить полимерные суспензии с узким распределением по диаметрам в широком интервале значений.

В качестве кремнийорганических поверхностно-активных веществ использовались полиоксиалкиленорганосилоксановые блок-сополимеры (ПОС), блочные полиэтиленоксидсилоксануретановые (ПЭСУ) сополимеры, полиметилсилоксановая жидкость (ПМС-300), α , ω -дигидроксиполидиметилсилоксаны (ГПДС), циклический олигофенилсилсесквиоксан (ОФС) и алкиламмониевая соль силоксангексилсульфоэфира (СГЭСЭ) и α -(карбоксиэтил)- ω -(триметилсилокси)полидиметилсилоксан (ПДС).

Исследования были начаты с изучения их растворимости в воде и в стироле. В таблице 1 приведены данные по отношению растворимости ПАВ в водной ($K_{\rm B}$) и органической ($K_{\rm M}$) фазах эмульсии. Следует отметить, что все кремнийорганические ПАВ, за исключением ПСЭУ-1 и СГЭСЭ, растворимы в стироле и мало растворимы в воде, что отличает их от обычно используемых водорастворимых ПАВ.

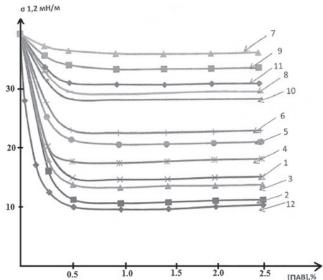


Рис. 1. Изотермы межфазного натяжения $\sigma_{1,2}$ на границе стирольный раствор ПАВ/вода: I – ПОС-1; 2 – ПОС-2; 3 – ПЭСУ-1; 4 – ПЭСУ-2; 5 – ПЭСУ-3; 6 – ПЭСУ-4; 7 – ПМС-300; 8 – ГПДС-1; 9 – ГПДС-2; 10 – ГПДС-3; 11 – ОФС; 12 – СГЭСЭ.

 $^{^2}$ Федеральный научно-клинический центр физико-химической медицины федерального медико-биологического агентства, Москва, Россия 3 ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва, Россия

⁴ Московская государственная академия ветеринарной медицины и биотехнологии – МВА имени К.И. Скрябина, Москва, Россия ⁵ МГУ им. М.В. Ломоносова, Москва, Россия

² Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
³ Pirogov Russian National Research Medical University, Moscow, Russia

⁴ Moscow State Academy of veterinary medicine and biotechnology named after K. I. Scriabin, Moscow, Russia
⁵ Lomonosov Moscow State University, Moscow, Russia

Изотермы межфазного натяжения исследуемых ПАВ представлены на рис. 1. Видно, что некоторые кремнийорганические ПАВ (ПОС-1, ПОС-2, ПЭСУ-1, СГЭСЭ) снижают межфазное натяжение ($\sigma_{1,2}$) до значений, близких к наблюдаемым на границе стирол/водный раствор ионогенных и неионных эмульгаторов. ОФС, ПМС-300, ГПДС характеризуются более слабыми поверхностно-активными свойствами на исследуемой границе и снижают межфазное натяжение до значений, близких к наблюдаемым на границе стирол/водный раствор типичных стабилизаторов, таких как поливиниловый спирт или желатин ($\sim 25 \text{ мH/м}$) [1].

По изотермам межфазного натяжения были рассчитаны максимальная адсорбция ПАВ ($\Gamma_{\rm max}$) и поверхностная активность ПАВ (G). Результаты исследования приведены в таблице 1. Видно, что наибольшие значения максимальной адсорбции, $\Gamma_{\rm max}$, имеют ПОС-1 и ПОС-2.

Таблица 1. Коллоидно-химические свойства кремнийорганических ПАВ

№	ПАВ	Отношение растворимости ПАВ в воде и мономере $K_{\rm B}/K_{\rm M}$	Г _{тах} ·106, моль/м²	<i>G</i> , мНм ² / моль	σ _{1,2} , мН/м
1	ПОС-1	0,23	31,84	39,12	14,1
2	ПОС-2	0,65	38,50	47,30	11,0
3	ПЭСУ-1	5,82	12,52	17,26	12,5
4	ПЭСУ-2	0,42	10,42	14,22	16,3
5	ПЭСУ-3	0,10	11,31	16,47	19,0
6	ПЭСУ-4	0,01	6,00	9,23	21,0
7	ГПДС-1	10-5	0,82	3,71	26,2
8	ГПДС-2	10-5	1,70	2,13	29,2
9	ГПДС-3	10-5	1,08	1,85	25,6
10	ПМС-300	10-5	13,30	17,89	31,5
11	ОФС	10-3	2,32	3,78	27,1
12	СГЭСЭ	7,1	4,45	7,52	10,5
13	ПДС	3.10-5	10,70	33,4	23,0

Для всех ПАВ, растворимых в воде и стироле, характерно образование микроэмульсии. Это было обнаружено в статических условиях на границе раздела при осторожном наслаивании стирола на водную фазу и при введении ПАВ в ту фазу, где они менее растворимы.

Площадь, приходящаяся на молекулу в монослое на границе вода-воздух для ПАВ 5-10, была оценена на пленочных весах Ленгмюра. На рис. 2–4 представлены изотермы поверхностного давления (π) от площади (S_0), приходящейся на молекулу указанных веществ в монослое. На кривых (рис. 2–4) имеются два линейных наклонных участка, которые можно отнести к жидкорастянутым и жидкоконденсированным структурам пленок. Последние характеризуются двумя участками с различной степенью упаковки молекул ПАВ (таблица 2).

Из данных таблицы 2 следует, что в жидкорастянутом состоянии площадь, занимаемая молекулой вещества, увеличивается прямо пропорционально количеству гидрофильных звеньев $-\mathrm{Si}(\mathrm{CH_3})_2\mathrm{O}-$ в молекуле. Площадь поверхности, приходящаяся на мономерное звено, для разных веществ в жидкорастянутом состоянии приблизительно одинакова и составляет около 10 Ų. Площади поверхности, приходящиеся на мономерное звено ПАВ, резко отличаются друг от друга в зависимости от строения вещества. Так, молекулы с низкой степенью полимеризации (9 и 10) занимают площадь 5 Ų, а молекулы с количеством звеньев n=270 (8) и n=82-130 (7) -1 Ų.

Можно предположить, что последние при увеличении поверхностного давления в монослое переходят в конформацию полимерного клубка. Площадь молекул ПЭСУ-3 и ПЭСУ-4 при увеличении поверхностного давления уменьшается менее, чем в 2 раза, что, возможно, обусловлено разной гибкостью силоксановых и этиленоксидных звеньев сополимеров. Это предположение можно доказать тем, что мономерное звено сополимеров занимает площадь поверхности $\sim 6~{\rm \AA}^2$, то есть такую же, как и мономерные звенья молекул 9 и 10.

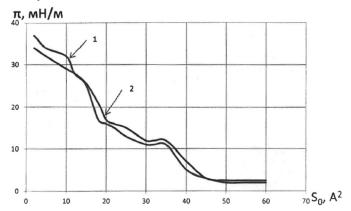


Рис. 2. Изотермы поверхностное давление (π)-площадь (S_0), занимаемая молекулой вещества на поверхности воды: I – ГПДС-2; 2 – ГПДС-3.

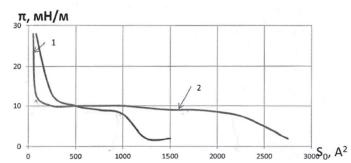


Рис. 3. Изотермы поверхностное давление (π)-площадь (S_0), занимаемая молекулой вещества в монослое на границе вода-воздух: $I-\Pi MC-300$; $2-\Gamma \Pi JC-1$.

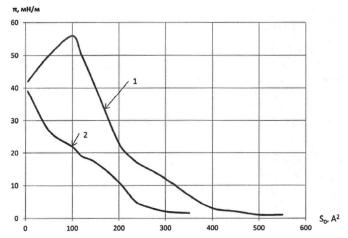


Рис. 4. Изотермы поверхностное давление (π)-площадь (S_0), занимаемая молекулой вещества на границе вода-воздух: I – ПЭСУ-3; 2 – ПЭСУ-4.

Таблица 2. Площадь, приходящаяся на молекулу ($S_0^{\text{мол}}$) ПАВ и на мономерное звено (S_0^{3B}) в монослое.

ПАВ	Площадь, приходящаяся на молекулу в жидкорастянутом состоянии, $S_{0 \text{ жр}^{\text{мол}}}$, Å ²	Площадь, приходящаяся на мономерное звено в жидкорастянутом состоянии, $S_{0 \text{ жp}}^{3\text{B}}$, \mathring{A}^2	Площадь, занимаемая молекулой в жидкоконденсированном состоянии, $S_{0 \text{ жк}^{\text{мол}}}$, $Å^2$	Площадь, занимаемая мономерным звеном в жидкоконденсированном состоянии, $S_{0 \text{ жк}^{3B}}$, \mathring{A}^{2}	
ГПДС-1	2770	10,3	320	1,2	
ГПДС-2	48	9,6	28	5,6	
ПМС-300	1120	10,2	105	1,0	
ГПДС-3	49	9,8	28	5,6	
ПЭСУ-3	430	9,8	250	5,6	
ПЭСУ-4	250	10,3	150	6,7	

Строение молекул ПАВ влияет на их поведение в монослое при возрастании поверхностного давления. Это подтверждается различием плато на кривых (рис. 2-4). Следует отметить, что для веществ 9 и 10 участок кривых π – S_0 (рис. 2), соответствующий переходу из жидкорастянутого в жидкоконденсированное состояние, находится в интервале значений π от 11 до 15–17 мH/м, при этом S_0 меняется от 36 до 20 Å², то есть этот участок небольшой. Следовательно, молекулы веществ 9 и 10 легко переходят в упорядоченное расположение - ориентируются в монослое, что может быть объяснено маленькой длиной силоксановой цепи. С увеличением молекулярной массы вещества участок кривой, соответствующий переходу из жидкорастянутого состояния в жидкоконденсированное, находится в более широком интервале значений π – S_0 . Так, для веществ ПЭСУ-3 и ПЭСУ-4 поверхностное давление на этом участке меняется от 12–13 до 20–22 мH/м, а S_0 – от 300 до 200 Å² (ПЭСУ-3) и от 200 до 100 Å² (ПЭСУ-4) (рис. 6). Различие в значениях S_0 может быть обусловлено различием длины и строения молекул сополимеров. Для веществ 7 и 8 область плато на кривых π – S_0 (рис. 3) находится в интервале значений π 8–12 мH/м, значения S_0 изменяются от 2300 до 300 Å² (8), от 950 до 100 Å² (7). Исходя из приведенных данных, можно предположить, что величина плато характеризует степень деформации молекул кремнийорганических веществ, которая происходит при увеличении поверхностного давления в монослое. В свою очередь, способность изменять конформацию зависит от гибкости полимерной цепи, что соответствует данным исследованиям.

Полученные результаты показывают, что молекулы указанных кремнийорганических соединений по-разному ведут себя на межфазной границе стирол-вода, то есть обладают разной поверхностной активностью, что подтверждается данными таблицы 1.

Отметим, что традиционный подход к выбору ПАВ для проведения гетерофазной полимеризации [9, 10] гидрофобных мономеров (растворимость в воде, величина $\sigma_{1,2}$, устойчивость эмульсий мономеров) не позволяет рекомендовать практически все эти вещества для стабилизации частиц суспензии из-за их невысоких поверхностно-активных свойств. Однако, учитывая их возможное участие вместе с полимером в формировании структурно-механического фактора устойчивости в межфазном адсорбционном слое на поверхности ПМЧ и повышении его прочности [15], была проведена полимеризация стирола в условиях, обычно используемых для синтеза полимерных суспензий в присутствии нерастворимых в воде ПАВ.

На рис. 5 приведены кинетические кривые конверсия—время, полученные при разных объемных соотношениях мономер—водная фаза при использовании в качестве стабилизатора ПОС-1.

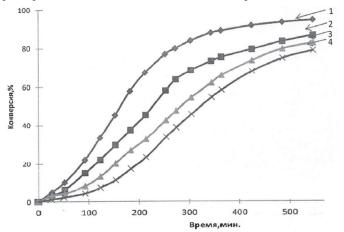


Рис. 5. Зависимость конверсии мономера от времени полимеризации при $[\Pi OC-1]=[K_2S_2O_8]=1$ мас.% в расчете на стирол, $t=70^{\circ}\mathrm{C}$, объемных соотношениях фаз мономер/вода: I-1:9;~2-1:6;~3-1:4;~4-1:2.

Видно, что при всех объемных соотношениях мономер/вода полимеризация протекает с небольшим индукционным периодом и постоянной скоростью до конверсии мономера ~ 80–96% за 8–9 часов. Однако с увеличением концентрации мономера уменьшается скорость полимеризации и снижается устойчивость частиц в процессе синтеза. Уже при 20–25% конверсии мономера при объемных соотношениях мономер/водная фаза, равных 1:4, 1:2, наблюдается образование коагулюма.

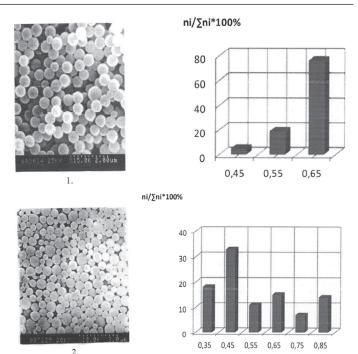


Рис. 6. Электронные микрофотографии и гистограммы распределения частиц полимерных суспензий по размерам, полученных в присутствии ПОС-1, $[\Pi OC-1] = [K_2S_2O_8] = 1$ мас.% расчете на стирол, t = 70°C, объемных соотношениях фаз мономер/вода: I - 1:9; 2 - 1:4.

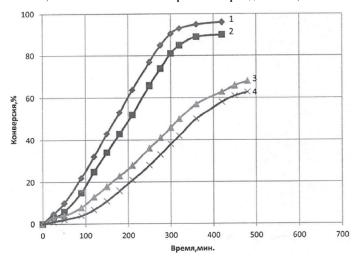


Рис. 7. Зависимость конверсии мономера от времени полимеризации при [ПОС-2] = $[K_2S_2O_8] = 1$ мас.% в расчете на стирол, t = 70°C, объемных соотношениях фаз мономер/вода: I = 1:9; 2 = 1:6; 3 = 1:4; 4 = 1:2.

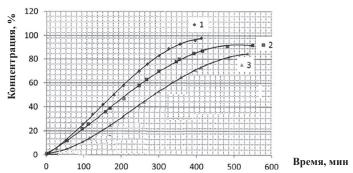


Рис. 8. Зависимость выхода полимера от времени. $[O\Phi C] = [K_2S_2O_8] = 1$ мас.% в расчете на стирол, $t = 80^{\circ}$ C, объемные соотношения фаз мономер/вода: I - 1:9; 2 - 1:6; 3 - 1:4.

Отличие ПОС-2 от ПОС-1 состоит в том, что ПОС-2 более гидрофобный из-за наличия в молекуле алкильного радикала R_1 . Увеличение гидрофобности ПАВ является причиной более высокого значения $\sigma_{1,2}$ и большей растворимости ПАВ в мономере.

Кривые конверсия—время, полученные при разных объемных соотношениях мономер/водная фаза при использовании в качестве стабилизатора ПОС-2, приведены на рис. 7. Видно, что при объемных соотношениях мономер:водная фаза, равных 1:9 и 1:6,

Синтез и технология Пластические массы, №5-6, 2022

Таблица 3. Характеристики полимерных суспензий, полученных в присутствии кремнийорганических ПАВ.

ПАВ	Объемное соотношение фаз	Средний диаметр частиц, D_{n} , мкм	Полидисперсность	Скорость полимеризации, $W_{\rm n}\cdot 10^3$, моль/л \cdot с	Молекулярная масса, 10-5	Содержание коагулюма в суспензии, %
ОФС	1:9	0,40	1,05	3,6	3,2	-
	1:4	0,50	1,10	2,7	5,3	-
ПОС-1	1:9	0,60	1,10	4,7	5,3	12
	1:4	0,70	1,80	4,3	6,2	22
ПОС-2	1:9	0,60	1,11	3,7	3,0	7
	1:4	0,65	1,30	2,9	4,7	15
ПЭСУ-1	1:9	0,40	1,10	4,3	1,6	16
	1:4	0,60	1,30	3,9	2,2	30
ПЭСУ-2	1:9	0,40	1,02	3,1	3,2	следы
	1:4	0,50	1,05	2,6	4,1	17

Таблица 4. Характеристики полимерных суспензий, полученных в присутствии кремнийорганических веществ.

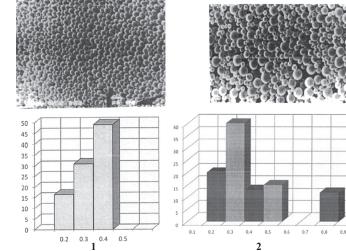
Стаби-	Объемное	[ПАВ], мас.%	Содержание	Молекулярная	Скорость	Средний	Коэф. поли-
лизатор	соотношение фаз	в расчете на	коагулюма,	масса	полимеризации,	диаметр частиц,	дисперсности,
лизатор	стирол/вода	стирол	%	полистирола, 10-5	%/мин	D _n , мкм	$K_{\Pi extsf{ ilde{\Pi}}}$
	1:4	1	7	3,56	0,35	0,76	1,13
ГПДС-1	1:9	1	следы	1,91	0,40	0,44	1,23
	1:9	3	_	1,35	0,44	0,33	1,04
	1:4	1	7	2,82	0,26	0,67	1,11
ГПДС-2	1:9	1	следы	2,65	0,39	0,42	1,06
, ,	1:9	3	_	2,18	0,61	0,44	1,02
	1:4	1	12	2,49	0,50	0,53	1,03
ПМС-300	1:9	1	8	2,25	0,50	0,31	1,04
	1:9	8	_	2,06	0,50	0,31	1,03
	1:4	1	6	3,71	0,48	0,50	1,05
ГПДС-3	1:9	1	следы	3,45	0,67	0,42	1,02
	1:9	2	_	3,23	0,67	0,33	1,01
	1:4	1	14	2,29	0,44	0,50	1,39
ПЭСУ-3	1:9	1	следы	2,20	0,46	0,39	1,09
	1:9	2	_	2,15	0,47	0,32	1,05
	1:4	1	17	2,59	0,40	0,72	1,04
ПЭСУ-4	1:9	1	следы	2,40	0,40	0,47	1,05
	1:9	8	_	2,07	0,45	0,32	1,01
СГЭСЭ	1:9	1	-	5,00	1,20	0,20	1,05

полимеризация протекает с небольшим индукционным периодом, как и в присутствии ПОС-1, и постоянной скоростью до конверсии мономера 93–98% за 7 часов.

И в этом случае с увеличением концентрации мономера снижается устойчивость частиц в процессе синтеза, и при объемных соотношениях мономер/водная фаза, равных 1:4 и 1:2, уже на 30–35%-ной конверсии мономера наблюдалось образование коагулюма.

Таким образом, увеличение гидрофобности ПАВ привело к ухудшению его поверхностно-активных свойств и снижению устойчивости суспензий в процессе синтеза.

Данные по полимеризации стирола в присутствии ОФС в качестве стабилизатора представлены на рис. 8.


При полимеризации стирола в присутствии ОФС характер кривой конверсия—время был такой же, как и при стабилизации час-

тиц суспензии ПОС-1 и ПОС-2. Конверсию мономера 99,9% достигали за 7–9 часов при объемных соотношениях мономер/водная фаза 1:9, 1:6, 1:4. С увеличением концентрации мономера скорость полимеризации уменьшается и снижается устойчивость частиц в процессе синтеза. При объемном соотношении фаз, равном 1:2, наблюдается образование коагулюма при 25–30% конверсии мономера.

Характеристики полимерных дисперсий, полученных в присутствии ОФС, ПЭСУ и ПОС, представлены в таблице 3.

Видно, что в ряду изученных ПАВ устойчивые суспензии в процессе синтеза получаются только при использовании в качестве стабилизатора циклического олигофенилсилоксана, ОФС.

Кривые конверсия—время для полимеризации стирола в присутствии полиэтиленоксидсилоксануретановых сополимеров различного строения (ПЭСУ-3), полиметилсилоксановой жидкости С-300

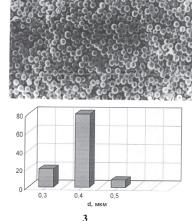


Рис. 9. Электронные микрофотографии и гистограмы распределения частиц полимерных суспензий по размерам, полученных в присутствии ПЭСУ-3, [ПЭСУ-3] = $[K_2S_2O_8]$ = 1 мас.% в расчете на стирол, t = 80° С, объемных соотношениях фазмономер/вода: I – 1:9; 2 – 1:4. [ПЭСУ-3] = $[K_2S_2O_8]$ = 2 мас.% в расчете на стирол, t = 80° С, 3 – 1:9.

и α,ω-дигидроксиполидиметилсилоксанов с разной длиной силоксановых цепей (ГПДС) – от 2 до 270 – отличаются друг от друга длиной стационарного участка, соответствующей постоянной скорости полимеризации. До практически полной конверсии полимеризация протекает за 8–10 часов. Свойства полимерных суспензий приведены в таблице 4.

Полученные в присутствии кремнийорганических стабилизаторов частицы имеют сферическую форму. Видно, что средние диаметры частиц составляют 0,4–0,7 мкм. В присутствии всех исследованных кремнийорганических соединений наблюдается относительно узкое распределение частиц суспензии по размерам при низком содержании мономера, а при высоком – только в присутствии соединений, практически нерастворимых в воде.

Молекулярные массы полистирола находятся в диапазоне значений молекулярных масс, обычно наблюдаемых при суспензионной полимеризации в присутствии ПВС или желатины – от $200 \cdot 10^3$ до $600 \cdot 10^3$ Да.

Таким образом, в присутствии частично растворимых в воде кремнийорганических поверхностно-активных веществ, таких как, например, полиоксиалкиленорганосилоксановый блок-сополимер, трехблочный полиэтиленоксид-силоксановый сополимер, циклический олигофенилсилоксан, получить устойчивые полимерные суспензии не удалось.

Работа выполнена при использовании оборудования Центра коллективного пользования РТУ МИРЭА (соглашение № 075-15-2021-689 от 01.09.2021 (уникальный идентификационный номер 2296.61321X0010)).

Работа выполнена при финансовой поддержке Минобрнауки России (Соглашение № 075-15-2020-794).

Литература

- 1. Чирикова, О.В. Синтез функциональных полимерных суспензий в присутствии кремнийорганических ПАВ: автореферат дис. ... кандидата химических наук: 02.00.06 / МИТХТ им. М. В. Ломоносова. Москва, 1994.– 24 с.: ил.
- Гетерофазная полимеризация стирола в присутствии биоразлагаемых ПАВ / В.В. Истратов, Е.В. Милушкова, С.М. Левачев [и др.] // Высокомолекулярные соединения. Серия Б. – 2015. – Т. 57. – №6. – С. 404.
- The synthesis of polystyrene suspensions in the presence of a mixture of water-soluble and waterinsoluble surfactants / D. B. Adikanova, G.Z. Eligbaeva, I.A. Gritskova [et al.] // International Polymer Science and Technology. – 2015. – Vol. 43. – No10. – P. 17–22.
- Полимеризация виниловых мономеров в присутствии нерастворимых в воде ПАВ / А.И. Каданцева, И.А. Грицкова, И.Г. Крашенинникова // Пластические массы. 2012. №8. С. 26–29.

- Гетерофазная полимеризация стирола в присутствии кремнийорганических соединений различной природы / И.А. Грицкова, В.С. Папков, И.Г. Крашенинникова, А.М. Евтушенко // Высокомолекулярные соединения. Серия А. – 2007. – Т. 49. – №3. – С. 389–396.
- Полимеризация стирола в присутствии кремнийорганических ПАВ различной природы / И.А. Грицкова, И.В. Хачатурян, Н. И. Прокопов [и др.] // Вестник МИТХТ им. М.В. Ломоносова. – 2008. – Т. 3. – №5. – С. 111–114.
- Mehta S.C., Somasundaran P., Maldarelli C., Kulkarni R. (2006) Effects of functional groups on surface pressure-area isotherms of hydrophilic silicone polymers. Langmuir. 22:9566–9571.
- 8. V.V. Arslanov, Polymer monolayers and Langmuir–Blodgett films. The influence of the chemical structure of the polymer and of external conditions on the formation and properties of organised planar assemblies, Usp. Khim., 63:1 (1994), 3–42; Russian Chem. Reviews, 63:1 (1994), 1–39.
- Extraordinary effect of polymer suspension stabilization in the presence of carboxyl-containing polydimethylsiloxanes / I. A. Gritskova, A.A. Zhdanov, O. V. Chirikova, O. I. Shchegolikhina//Doklady Akademii nauk. – 1994. – Vol. 334. – Nol. – P. 57–59.
- Полимеризация стирола в присутствии поверхностно-активных кремнийорганических веществ различной природы / И.А. Грицкова, В.М. Копылов, Г.А. Симакова [и др.] // Высокомолекулярные соединения. Серия Б. – 2010. – Т. 52. – №9. – С. 1689–1695.
- 11. Klein S.M., Manoharan V.N., Pine D.J. et al (2003) Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym Sci 282:7–13.
- 12. Kim C., Gurau M.C., Cremer P.S., Yu H.(2008) Chain conformation of poly(dimethyl siloxane) at the air/water interface by sum frequency generation. Langmuir. 24:10155–10160.
- Lenk T.J., Lee D.H.T., Koberstein J.T. (1994) End group effects on monolayers of functionally-terminated poly(dimethylsiloxanes) at the air-water interface. Langmuir. 10:1857–1864.
- 14. Esker A.R., Yu H. (2012) Langmuir monolayers of siloxanes and silsesquioxanes. In: Owen M., Dvornic P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht.
- 15. Функциональные кремнийорганические вещества стабилизаторы полимерных суспензий / И.А. Грицкова, Д.И. Шрагин, С.М. Левачев [и др.] // Тонкие химические технологии. — 2016. — Т. 11. — №2. — С. 5–16.