УДК 678

# Расчет свойств полимеров по химическому строению и составу. Часть 2. Calculation of polymer properties by chemical structure and composition. Part 2.

Г.А. ЛУЩЕЙКИН, С.А. ТЮРИНА G.A. LUSHHEJKIN, S.A. TYURINA

> РТУ МИРЭА, Россия, Москва MIREA - Russian Technological University, Moscow, Russia mgupi.tyurina@mail.ru

В статье приводятся методы расчета и оценки физико-механических характеристик такого класса полимеров как полиолефины по химическому строению и составу во всем возможном диапазоне температур и частот их применения на основе модельных представлений.

Ключевые слова: полимеры, моделирование свойств полимеров, расчет физико-химических параметров полимеров

The article presents methods for calculating and assessment the physical and mechanical characteristics of such a class of polymers as polyolefins by their chemical structure and composition in the entire possible range of application temperatures and frequencies based on model concepts.

Keywords: polymers, modeling of polymer properties, calculation of physicochemical parameters of polymers

DOI: 10.35164/0554-2901-2021-9-10-27-29

#### Введение

В первой части статьи нами была подробно описана методика расчета отдельных характеристик полимеров по химическому строению в различном диапазоне температур и частот [1]. Среди описанных характеристик были физические, механические, электрические и теплофизические характеристики [2, 3, 4, 5, 6, 7]. В данной работе приводятся методики расчета свойств такого класса полимеров как полиолефины, исходя из химического строения полимеров и используя модельные представления. Полиолефины нашли широчайшее применение в промышленности, поэтому расчет их свойств представляется крайне важным.

## Цель работы

Целью работы являлось описание методов расчета характеристик полиолефинов - плотности, механических, электрических и теплофизических параметров при различных температурах. Расчеты и оценки проведены по химическому строению и составу полимеров на основе модельных представлений.

### Моделирование параметров полиолефинов

Полиолефины представляют собой обширный класс термопластов, нашедший широчайшее применение. Яркими представите-

лями данной группы полимеров являются полиэтилены (ПЭНП, ПЭВП), полипропилен, полибутилен и многие другие.

Структурные химические формулы мономерных звеньев полиолефинов:

Полиэтилен ПЭ (ПЭ низкой плотности ПЭНП и ПЭ высокой плот-

 $-CH_2-CH_2$ ности ПЭВП) Полипропилен ПП

-CH2-CH(CH3)-

# Расчет плотности полиолефинов Расчет плотности полимеров возможно осуществить, используя

метод аддитивности вкладов отдельных фрагментов в молекулярный объем

$$V = \sum V_i \tag{1}$$

и вкладов в молекулярную массу

$$M = \Sigma M_{\rm i} \tag{2}$$

Плотность полимеров равна

$$\rho = M/V \tag{3}$$

# Расчет механических свойств полиолефинов

Расчеты объемного модуля упругости K проводили по формуле

$$K = \rho(U/V)^{6/1000}, \Pi a$$
 (4)

где U – функция  $P_{ao}$ . Функцию  $P_{ao}$  рассчитывают как сумму вкладов отдельных фрагментов  $U=\Sigma U_{i}$ .

Таблица 1. Расчет молекулярной массы полиолефинов M.

|                      |       | v 1                        | <b>I</b>                   |                       |               |               |               |
|----------------------|-------|----------------------------|----------------------------|-----------------------|---------------|---------------|---------------|
| Фрагмент             | $M_i$ | ПНЄП                       | ПЭВП                       | ПП                    | ПЭНП          | ПЭВП          | ПП            |
| $\Phi$ рагмент $M_i$ | IVI į | Количество атомов <i>n</i> | Количество атомов <i>n</i> | Количество атомов $n$ | $n \cdot M_i$ | $n \cdot M_i$ | $n \cdot M_i$ |
| C                    | 12    | 2                          | 2                          | 3                     | 24            | 24            | 36            |
| Н                    | 1     | 4                          | 4                          | 6                     | 4             | 4             | 6             |
| M=S                  |       |                            |                            | 42                    | 28            | 28            | 42            |

Таблица 2. Расчет молярного объема полиолефинов.

| Фиотрести              | $V_{\rm i}$ | ПЭНП                    | ПЭВП                    | ПП                      | ПЭНП          | ПЭВП          | ПП            |
|------------------------|-------------|-------------------------|-------------------------|-------------------------|---------------|---------------|---------------|
| Фрагмент               |             | Количество фрагментов п | Количество фрагментов п | Количество фрагментов п | $n \cdot V_i$ | $n \cdot V_i$ | $n \cdot V_i$ |
| -CH <sub>2</sub> -     | 15,85       | 2                       | 2                       | 1                       | 31,7          | 31,7          | 15,85         |
| -СН(СН <sub>3</sub> )- | 33,5        |                         |                         | 1                       |               |               | 33,5          |
| V=S                    |             |                         |                         |                         | 31,7          | 31,7          | 49,35         |

Таблица 3. Результаты расчета плотности полиолефинов.

| The state of the s |                                |                         |                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|-------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ПЭНП                           | ПЭВП                    | ПП                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Количество фрагментов <i>п</i> | Количество фрагментов п | Количество фрагментов п |  |  |  |  |
| Плотность аморфных полимеров, $\rho_a$ , кг/м <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 883                            | 833,3                   | 833,66                  |  |  |  |  |
| Содержание кристаллической фазы, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                             | 70                      | 60                      |  |  |  |  |
| Плотность кристаллического полимера, кг/м3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 946,6                          | 963,3                   | 920,24                  |  |  |  |  |

Таблица 4. Значения  $U_{\rm i}$  полиолефинов.

| Молекулярный фрагмент | Вклад фрагмента в функцию Ра <sub>0</sub> |   | ПЭВП Количество фрагментов $n$ | ПП Количество фрагментов <i>п</i> | ПЭНП $n \cdot V_i$ | ПЭВП $n \cdot V_i$ | $\Pi\Pi$ $n \cdot V_{i}$ |
|-----------------------|-------------------------------------------|---|--------------------------------|-----------------------------------|--------------------|--------------------|--------------------------|
| -СНз                  | 1361                                      |   |                                | 1                                 |                    |                    | 1361                     |
| >CH-                  | 460                                       |   |                                | 1                                 |                    |                    | 460                      |
| -СН <sub>2</sub> -    | 895                                       | 2 | 2                              | 1                                 | 1790               | 1790               | 895                      |
| $U = \Sigma U_i$      |                                           |   |                                |                                   | 1790               | 1790               | 2716                     |
| К, ГПа                |                                           |   |                                |                                   | 3,068              | 3,124              | 2,604                    |
| $E_{ m p},$ ГПа       |                                           |   |                                |                                   | 1,8408             | 1,8743             | 1,563                    |

Коэффициент Пуассона у ПЭ и ПП равен 0,4.

Таблица 5. Вклады  $Y_i$  отдельных фрагментов в температуру стеклования  $T_{\kappa} = T_{\rm c} + 273^*$ .

| Функциональная                                                                       | $Y_i$ - вклады групп | ЕП                 | ПП                 | ПЭ            | ПП            |
|--------------------------------------------------------------------------------------|----------------------|--------------------|--------------------|---------------|---------------|
| группа                                                                               | в Тс                 | количество групп п | количество групп п | $n \cdot Y_i$ | $n \cdot Y_i$ |
| -CH <sub>2</sub> -                                                                   | 170                  | 2                  | 1                  | 340           | 170           |
| -CH(CH <sub>3</sub> )-                                                               | 336                  |                    | 1                  |               | 336           |
| Сумма $Y_i$                                                                          |                      |                    |                    | 340           | 506           |
| Z                                                                                    |                      | 2                  | 2                  |               |               |
| $T_{\kappa}, K = \Sigma Y_{i}/Z$                                                     |                      |                    |                    | 170           | 253           |
| Температура стеклования $T_c$ , °С                                                   |                      |                    |                    | -103          | -20           |
| Температура $\alpha_{\rm c}$ -релаксации $T(\alpha_{\rm c})$ , $K=0.8 \cdot T\kappa$ |                      |                    |                    | 304,5         | 379,5         |
| $T(\alpha_c)$ , C                                                                    |                      |                    |                    | 67            | 106,5         |

Таблица 6. Результаты расчета теплофизических параметров полиолефинов.

|                                                               | ПЭНП                  | ПЭВП                  | ПП    |
|---------------------------------------------------------------|-----------------------|-----------------------|-------|
| Содержание кристаллической фазы Хс, %                         | 55 (по плотности 32%) | 70 (по плотности 60%) | 60    |
| $T_{\rm c}, K = Y_i/Z$                                        |                       |                       | 253   |
| T <sub>c</sub> , °C                                           | -67                   | -67                   | -20   |
| Температура плавления $T_{\Pi\Pi}$ , ° $C$                    | 131                   | 131                   | 106,5 |
| Температура $\alpha_{c}$ - релаксации $T(\alpha_{c})$ , °C    | 67                    | 67                    | 106,5 |
| Энергия активации $\beta$ -релаксации $E_a(\beta)$ , кДж/моль | 25,59                 | 25,59                 | 31,21 |

Значения Uі приведены в таблице 4.

Расчет теплофизических свойств полиолефинов

Расчет температур стеклования проводили по формуле

$$= Y/Z \tag{5}$$

где Y – сумма вкладов отдельных фрагментов в температуру стеклования  $Y_i$ .

$$Y = \sum Y_i$$
.

Вклады для отдельных фрагментов  $Y_i$  приведены в таблице 5.

Рассчитанная температура плавления равна

$$T_{\text{пл}} = 2T_{\text{K}} = 340 \text{K} = 67^{\circ} \text{C}$$

Согласно [9] – это температура  $\alpha_c$ -релаксации, а

$$T_{\text{пл}} = 1.2T(\alpha_{\text{c}}) = 404 \text{ K} = 131^{\circ}\text{C},$$

что и указано в таблице 6.

В таблице 7 приводятся полученные результаты расчетов параметров механической релаксации в таких полиолефинах, как ПЭНП, ПЭВП и ПП.

Таблица 7. Результаты расчетов параметров механической релаксации в полиолефинах.

|                                                                                               | ПЭНП    | ПЭВП    | ПП      |
|-----------------------------------------------------------------------------------------------|---------|---------|---------|
| $E_{\rm p}$ , ГПа                                                                             | 1,8408  | 1,874   | 1,5628  |
| Инкремент модуля упругости $\Delta E_{p}(\alpha) = (1 - Xc) \cdot \Delta E_{p}(\alpha)$ , ГПа | 0,828   | 0,5622  | 0,625   |
| $E_{\rm p}({ m T}>{ m T}_{ m \Pi\Pi}),$ Па                                                    | 2,6.105 | 2,6.105 | 2,6.105 |
| $\Delta E_{\rm p}(\alpha)$ , ΓΠα                                                              | 0,613   | 0,625   | 0,521   |
| $\Delta E_{\rm p}(\alpha_{\rm c})$ , ΓΠα                                                      | 0,506   | 0,6555  | 0,47    |
| $\Delta E_{\mathrm{p}}(\Pi \pi), \Gamma \Pi \mathrm{a}$                                       | 0,506   | 0,6555  | 0,47    |
| $E_{\rm p}(T=20-25^{\circ}{\rm C})$ , ГПа                                                     | 1,0128  | 1,3118  | 0,9378  |

На рис. 1 представлены температурные зависимости модуля упругости  $E_{\rm p}$  и тангенса угла механических потерь  ${\rm tg}\delta_{\rm m}$  при 1  $\Gamma$ ц для таких полиолефинов, как ПЭНП, ПЭВП и ПП.

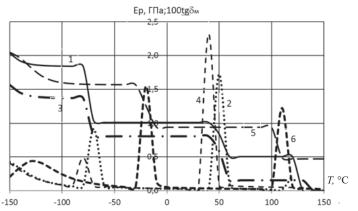



Рис. 1. Температурные зависимости модуля упругости  $E_{\rm p}$  (1, 3, 5) и тангенса угла механических потерь  ${\rm tg\delta_M}$  (2, 4, 6) при 1  $\Gamma$ ц полиолефинов: 1, 2 – ПЭНП; 3, 4 – ПЭВП; 5, 6 – ПП.

Расчет электрических свойств полиолефинов

Параметры, необходимые для выполнения расчетов электрических свойств полиолефинов, приведены в таблицах  $8{-}10$ .

Таблица 8. Вклады в мольную поляризацию  $P_{\rm i}$ .

|                                            | •                             |                                    | •                              |                                        |                                  |
|--------------------------------------------|-------------------------------|------------------------------------|--------------------------------|----------------------------------------|----------------------------------|
| Молекулярный фрагмент (химическая формула) | Вклад фрагмента в $P_{\rm i}$ | ПЭ кол-во фрагмен-<br>тов <i>n</i> | ПП кол-во фрагмен-тов <i>п</i> | ПЭ<br><i>P</i> <sub>i</sub> · <i>n</i> | $\Pi\Pi$ $P_{\mathbf{i}}\cdot n$ |
| -CH <sub>3</sub>                           | 17,66                         |                                    | 1                              |                                        |                                  |
| >CH-                                       | 23,5                          |                                    | 1                              |                                        |                                  |
| -CH <sub>2</sub> -                         | 20,64                         | 2                                  | 1                              |                                        |                                  |
| $\Sigma P_{i}$                             |                               |                                    |                                | 41,28                                  | 61,8                             |
| $\varepsilon = (\Sigma P_i / M)^2$         |                               |                                    |                                | 2,17                                   | 2,17                             |

Таблица 9. Дипольные моменты полярных групп.

| Химические<br>формулы<br>отдельных<br>фрагментов | Дипольные моменты (1D=0,33·10-30 Кл·м) | ПЭ | ПП |
|--------------------------------------------------|----------------------------------------|----|----|
| -CH <sub>3</sub>                                 | 0,4                                    |    | 1  |
| -CH <sub>2</sub> -CH <sub>2</sub> -              | 0,4                                    | 1  |    |

**Таблица 10.** Результаты расчетов параметров электрической релаксации полиолефинов.

| ¬                                          |        |        |        |
|--------------------------------------------|--------|--------|--------|
|                                            | ПЭНП   | ПЭВП   | ПП     |
| Инкременты                                 |        |        |        |
| диэлектрической                            | 0,144  | 0,0963 | 0,128  |
| проницаемости: $\Delta \epsilon(\alpha)$   |        |        |        |
| Диэлектрическая прони-                     |        |        |        |
| цаемость при бесконеч-                     | 1,919  | 1,967  | 2,02   |
| но высокой частоте $\varepsilon_{\vec{l}}$ |        |        |        |
| Δε(β)                                      | 0,107  | 0,107  | 0,0683 |
| $\Delta \epsilon(\alpha_{ m C})$           | 0,0883 | 0,112  | 0,0615 |

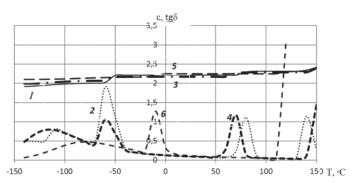



Рис. 2. Температурные зависимости диэлектрической проницаемости  $\epsilon$  (1, 3, 5) и тангенса угла диэлектрических потерь  $tg\delta$  (2, 4, 6) при 1 к $\Gamma$ ц полиолефинов: ПЭНП (1, 2), ПЭВП (3, 4), ПП (5, 6). (Приведены значения 2, 4 –  $tg\delta$ ·100 и 6 –  $tg\delta$ ·10)

На рис. 3 приводятся температурные зависимости ударной вязкости  $a_{\rm H}$  таких полиолефинов, как ПЭНП, ПЭВП, ПП.

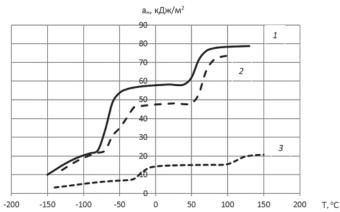



Рис. 3. Температурные зависимости ударной вязкости полиолефинов (по Шарпи на образцах с надрезом):  $I - \Pi \ni \Pi , 2 - \Pi \ni \Pi , 3 - \Pi \Pi .$ 

Таблица 11. Оценка прочностных характеристик полиолефинов (при комнатной температуре).

|                                                                                   | ПЭНП   | ПЭВП  | ПП    |
|-----------------------------------------------------------------------------------|--------|-------|-------|
| Модуль упругости $E_{\rm p}$ , ГПа                                                | 1,0108 | 1,31  | 0,939 |
| Предел прочности при растяжении $\sigma_p$ , МПа                                  | 10,1   | 13,10 | 9,39  |
| Ударная вязкость по Шарпи на образцах с надрезом $a_{\rm H}$ , кДж/м <sup>2</sup> | 43,4   | 30,1  | 9,5   |
| Электрическая прочность $E_{\rm np}$ , кВ/мм                                      | 40,6   | 39,5  | 37,1  |

### Заключение

Таким образом, в статье изложены основные подходы к моделированию физико-механических, электрических, теплофизических характеристик полиолефинов, исходя из химического состава в широком диапазоне температур и частот.

### Литература

- Лущейкин Г.А., Тюрина С.А. Расчет свойств полимеров по химическому строению и составу. Часть 1. Пластические массы, 2021, №3-4, с. 27-31.
- Лущейкин Г.А. Моделирование упругих свойств стеклонаполненных полимеров. – Пластические массы, 2001, №5. С. 17–19.
- 3. Лущейкин Г.А. Моделирование упругих и прочностных свойств наполненных полимеров и композитов. Пластические массы, 2003, №5. С. 36–39
- 4. Лущейкин Г.А. Моделирование свойств полимеров по их химическому составу. Моделирование механических свойств. Пластические массы, 2006, №2, С. 44–49.
- Лущейкин Г.А. Моделирование механических свойств полимерных композиционных материалов, наполненных мелом, минеральной ватой, алюминием, стеклотканью и стеклянными чешуйками. – Пластические массы, 2006, №4, С. 35–37.
- 6. Лущейкин Г.А. Моделирование свойств полимеров по их химическому составу. Моделирование электрических свойств. Пластические массы, 2008, №2, С. 44–48.
- Лущейкин Г.А. Моделирование свойств кристаллизующихся полимеров в области повышенных температур. – Пластические массы, 2011, №7, С. 80–82.